Previous |  Up |  Next

Article

Title: A generalization of amenability and inner amenability of groups (English)
Author: Ghaffari, Ali
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 3
Year: 2012
Pages: 729-742
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a locally compact group. We continue our work [A. Ghaffari: $\Gamma $-amenability of locally compact groups, Acta Math. Sinica, English Series, 26 (2010), 2313–2324] in the study of $\Gamma $-amenability of a locally compact group $G$ defined with respect to a closed subgroup $\Gamma $ of $G\times G$. In this paper, among other things, we introduce and study a closed subspace $A_\Gamma ^p(G)$ of $L^\infty (\Gamma )$ and then characterize the $\Gamma $-amenability of $G$ using $A_\Gamma ^p(G)$. Various necessary and sufficient conditions are found for a locally compact group to possess a $\Gamma $-invariant mean. (English)
Keyword: amenability
Keyword: Banach algebra
Keyword: inner amenability
Keyword: locally compact group
MSC: 22D15
MSC: 43A60
idZBL: Zbl 1265.43003
idMR: MR2984632
DOI: 10.1007/s10587-012-0043-4
.
Date available: 2012-11-10T21:14:32Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143023
.
Reference: [1] Bami, M. L., Mohammadzadeh, B.: Inner amenability of locally compact groups and their algebras.Stud. Sci. Math. Hung. 44 (2007), 265-274. Zbl 1174.43001, MR 2325523
Reference: [2] Bratteli, O., Robinson, D. W.: Operator Algebras and Quantum Statistical Mechanics I.Springer New York-Heidelberg-Berlin (1979). MR 0611508
Reference: [3] Dales, H. G.: Banach Algebras and Automatic Continuity. London Math. Soc. Monographs.Clarendon Press Oxford (2000). MR 1816726
Reference: [4] Dunford, N., Schwartz, J. T.: Linear Operators. Part I.Interscience New York (1958).
Reference: [5] Edwards, R. E.: Functional Analysis.Holt, Rinehart and Winston New York (1965). Zbl 0182.16101, MR 0221256
Reference: [6] Effros, E. G.: Property $\Gamma$ and inner amenability.Proc. Am. Math. Soc. 47 (1975), 483-486. Zbl 0321.22011, MR 0355626
Reference: [7] Eymard, P.: L'algebre de Fourier d'un groupe localement compact.Bull. Soc. Math. Fr. 92 (1964), 181-236 French. Zbl 0169.46403, MR 0228628, 10.24033/bsmf.1607
Reference: [8] Folland, G. B.: A Course in Abstract Harmonic Analysis.CRC Press Boca Raton (1995). Zbl 0857.43001, MR 1397028
Reference: [9] Ghaffari, A.: $\Gamma$-amenability of locally compact groups.Acta Math. Sin., Engl. Ser. 26 (2010), 2313-2324. Zbl 1219.43001, MR 2737302, 10.1007/s10114-010-9498-0
Reference: [10] Ghaffari, A.: Structural properties of inner amenable discrete groups.Bull. Iran. Math. Soc. 33 (2007), 25-35. Zbl 1155.22006, MR 2338797
Reference: [11] Hewitt, E., Ross, K. A.: Abstract Harmonic Analysis.Springer Berlin (1963) Zbl 0213.40103
Reference: [12] Herz, C.: Harmonic synthesis for subgroups.Ann. Inst. Fourier (Grenoble) 23 (1973), 91-123. Zbl 0257.43007, MR 0355482, 10.5802/aif.473
Reference: [13] Lau, A. T.-M.: Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups.Fundam. Math. 118 (1983), 161-175. Zbl 0545.46051, MR 0736276, 10.4064/fm-118-3-161-175
Reference: [14] Lau, A. T.-M., Paterson, A. L. T.: Inner amenable locally compact groups.Trans. Am. Math. Soc. 325 (1991), 155-169. Zbl 0718.43002, MR 1010885, 10.1090/S0002-9947-1991-1010885-5
Reference: [15] Lau, A. T.-M., Paterson, A. L. T.: Operator theoretic characterizations of [IN]-groups and inner amenability.Proc. Am. Math. Soc. 102 (1988), 893-897. Zbl 0644.43002, MR 0934862
Reference: [16] Li, B., Pier, J.-P.: Amenability with respect to a closed subgroup of a product group.Adv. Math. (Beijing) 21 (1992), 97-112. Zbl 0763.43002, MR 1153929
Reference: [17] Memarbashi, R., Riazi, A.: Topological inner invariant means.Stud. Sci. Math. Hung. 40 (2003), 293-299. Zbl 1047.43001, MR 2036960
Reference: [18] Paterson, A. L. T.: Amenability. Math. Survey and Monographs Vol. 29.Am. Math. Soc. Providence (1988). MR 0961261
Reference: [19] Pier, J.-P.: Amenable Banach Algebras. Pitman Research Notes in Mathematics Series, Vol. 172.Longman Scientific & Technical/John Wiley & Sons Harlow/New York (1988). MR 0942218
Reference: [20] Pier, J.-P.: Amenable Locally Compact Groups.John Wiley & Sons New York (1984). Zbl 0621.43001, MR 0767264
Reference: [21] Rudin, W.: Functional Analysis, 2nd ed.McGraw Hill New York (1991). Zbl 0867.46001, MR 1157815
Reference: [22] Stokke, R.: Quasi-central bounded approximate identities in group algebras of locally compact groups.Ill. J. Math. 48 (2004), 151-170. Zbl 1037.43004, MR 2048220, 10.1215/ijm/1258136179
Reference: [23] Yuan, C. K.: Conjugate convolutions and inner invariant means.J. Math. Anal. Appl. 157 (1991), 166-178. Zbl 0744.43004, MR 1109449, 10.1016/0022-247X(91)90142-M
Reference: [24] Yuan, C. K.: Structural properties of inner amenable groups.Acta Math. Sin., New Ser. 8 (1992), 236-242. Zbl 0766.43003, MR 1192624, 10.1007/BF02582912
.

Files

Files Size Format View
CzechMathJ_62-2012-3_13.pdf 287.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo