Previous |  Up |  Next

Article

Title: On generalized Moser-Trudinger inequalities without boundary condition (English)
Author: Černý, Robert
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 3
Year: 2012
Pages: 743-785
Summary lang: English
.
Category: math
.
Summary: We give a version of the Moser-Trudinger inequality without boundary condition for Orlicz-Sobolev spaces embedded into exponential and multiple exponential spaces. We also derive the Concentration-Compactness Alternative for this inequality. As an application of our Concentration-Compactness Alternative we prove that a functional with the sub-critical growth attains its maximum. (English)
Keyword: Orlicz space
Keyword: Orlicz-Sobolev space
Keyword: embedding theorem
Keyword: sharp constant
Keyword: Moser-Trudinger inequality
Keyword: concentration-compactness principle
MSC: 26D10
MSC: 46E30
MSC: 46E35
MSC: 49J99
idZBL: Zbl 1265.46047
idMR: MR2984633
DOI: 10.1007/s10587-012-0044-3
.
Date available: 2012-11-10T21:16:11Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143024
.
Reference: [1] Černý, R.: Concentration-compactness principle for embedding into multiple exponential spaces.Math. Inequal. Appl. 15 (2012), 165-198. Zbl 1236.46027, MR 2919441
Reference: [2] Černý, R.: Note on the concentration-compactness principle for generalized Moser-Trudinger inequalities.Cent. Eur. J. Math. 10 (2012), 590-602. MR 2893423, 10.2478/s11533-011-0102-3
Reference: [3] Černý, R., Cianchi, A., Hencl, S.: Concentration-compactness principle for Moser-Trudinger inequalities: new results and proofs.(to appear) in Ann. Mat. Pura Appl.
Reference: [4] Černý, R., Gurka, P., Hencl, S.: Concentration-compactness principle for generalized Trudinger inequalities.Z. Anal. Anwend. 30 (2011), 355-375. Zbl 1225.46026, MR 2819500, 10.4171/ZAA/1439
Reference: [5] Černý, R., Mašková, S.: A sharp form of an embedding into multiple exponential spaces.Czech. Math. J. 60 (2010), 751-782. Zbl 1224.46064, MR 2672414, 10.1007/s10587-010-0048-9
Reference: [6] Cherrier, P.: Meilleures constants dans des inégalités rélatives aux espaces de Sobolev.Bull. Sci. Math., II. Ser. 108 (1984), 225-262. MR 0771911
Reference: [7] Cianchi, A.: A sharp embedding theorem for Orlicz-Sobolev spaces.Indiana Univ. Math. J. 45 (1996), 39-65. Zbl 0860.46022, MR 1406683, 10.1512/iumj.1996.45.1958
Reference: [8] Cianchi, A.: Moser-Trudinger inequalities without boundary conditions and isoperimetric problems.Indiana Univ. Math. J. 54 (2005), 669-705. Zbl 1097.46016, MR 2151230, 10.1512/iumj.2005.54.2589
Reference: [9] Cianchi, A., Pick, L.: Sobolev embedings into $BMO$, $VMO$, and $L^{\infty}$.Ark. Mat. 36 (1998), 317-340. MR 1650446, 10.1007/BF02384772
Reference: [10] Edmunds, D. E., Gurka, P., Opic, B.: Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces.Indiana Univ. Math. J. 44 (1995), 19-43. Zbl 0826.47021, MR 1336431, 10.1512/iumj.1995.44.1977
Reference: [11] Edmunds, D. E., Gurka, P., Opic, B.: Double exponential integrability, Bessel potentials and embedding theorems.Stud. Math. 115 (1995), 151-181. Zbl 0829.47024, MR 1347439
Reference: [12] Edmunds, D. E., Gurka, P., Opic, B.: Sharpness of embeddings in logarithmic Bessel-potential spaces.Proc. R. Soc. Edinb., Section A 126 (1996), 995-1009. Zbl 0860.46024, MR 1415818, 10.1017/S0308210500023210
Reference: [13] Edmunds, D. E., Gurka, P., Opic, B.: On embeddings of logarithmic Bessel potential spaces.J. Funct. Anal. 146 (1997), 116-150. Zbl 0934.46036, MR 1446377, 10.1006/jfan.1996.3037
Reference: [14] Edmunds, D. E., Gurka, P., Opic, B.: Norms of embeddings in logarithmic Bessel-potential spaces.Proc. Am. Math. Soc. 126 (1998), 2417-2425. MR 1451796, 10.1090/S0002-9939-98-04327-5
Reference: [15] Edmunds, D. E., Krbec, M.: Two limiting cases of Sobolev imbeddings.Houston J. Math. 21 (1995), 119-128. Zbl 0835.46027, MR 1331250
Reference: [16] Fusco, N., Lions, P.-L., Sbordone, C.: Sobolev imbedding theorems in borderline cases.Proc. Am. Math. Soc. 124 (1996), 561-565. Zbl 0841.46023, MR 1301025, 10.1090/S0002-9939-96-03136-X
Reference: [17] Hencl, S.: A sharp form of an embedding into exponential and double exponential spaces.J. Funct. Anal. 204 (2003), 196-227. Zbl 1034.46031, MR 2004749, 10.1016/S0022-1236(02)00172-6
Reference: [18] Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. I.Rev. Mat. Iberoam. 1 (1985), 145-201. Zbl 0704.49005, MR 0834360, 10.4171/RMI/6
Reference: [19] Moser, J.: A sharp form of an inequality by Trudinger.Indiana Univ. Math. J. 20 (1971), 1077-1092. Zbl 0213.13001, MR 0301504, 10.1512/iumj.1971.20.20101
Reference: [20] Opic, B., Pick, L.: On generalized Lorentz-Zygmund spaces.Math. Inequal. Appl. 2 (1999), 391-467. Zbl 0956.46020, MR 1698383
Reference: [21] Rao, M. M., Ren, Z. D.: Theory of Orlicz Spaces. Pure and Applied Mathematics.Marcel Dekker New York (1991). MR 1113700
Reference: [22] Trudinger, N. S.: On imbeddings into Orlicz spaces and some applications.J. Math. Mech. 17 (1967), 473-484. Zbl 0163.36402, MR 0216286
.

Files

Files Size Format View
CzechMathJ_62-2012-3_14.pdf 449.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo