Previous |  Up |  Next

Article

Title: Sum and difference sets containing integer powers (English)
Author: Yang, Quan-Hui
Author: Wu, Jian-Dong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 3
Year: 2012
Pages: 787-793
Summary lang: English
.
Category: math
.
Summary: Let $n > m \geq 2$ be positive integers and $n=(m+1) \ell +r$, where $0 \leq r \leq m.$ Let $C$ be a subset of $\{0,1,\cdots ,n\}$. We prove that if $$ |C|>\begin {cases} \lfloor n/2 \rfloor +1 &\text {if $m$ is odd}, \\ m \ell /2 +\delta &\text {if $m$ is even},\\ \end {cases} $$ where $\lfloor x \rfloor $ denotes the largest integer less than or equal to $x$ and $\delta $ denotes the cardinality of even numbers in the interval $[0,\min \{r,m-2\}]$, then $C-C$ contains a power of $m$. We also show that these lower bounds are best possible. (English)
Keyword: sum and difference set
Keyword: integer power
MSC: 11B13
MSC: 11B30
idZBL: Zbl 1265.11017
idMR: MR2984634
DOI: 10.1007/s10587-012-0045-2
.
Date available: 2012-11-10T21:17:10Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143025
.
Reference: [1] Alon, N.: Subset sums.J. Number Theory 27 (1987), 196-205. Zbl 0622.10042, MR 0909836, 10.1016/0022-314X(87)90061-8
Reference: [2] Erdős, P.: Some problems and results on combinatorial number theory.Graph theory and its applications: East and West (Jinan, 1986). New York Academy of Sciences, Ann. N. Y. Acad. Sci. 576 (1989), 132-145. MR 1110810, 10.1111/j.1749-6632.1989.tb16392.x
Reference: [3] Erdős, P., Freiman, G.: On two additive problems.J. Number Theory 34 (1990), 1-12. MR 1039762, 10.1016/0022-314X(90)90047-U
Reference: [4] Freiman, G. A.: Sumsets and powers of 2.Sets, graphs and numbers. A birthday salute to Vera T. Sós and András Hajnal. Amsterdam: North-Holland Publishing Company. Colloq. Math. Soc. János Bolyai 60 (1992), 279-286. Zbl 0796.11005, MR 1218196
Reference: [5] Kapoor, V.: Sets whose sumset avoids a thin sequence.J. Number Theory 130 (2010), 534-538. Zbl 1217.11013, MR 2584837, 10.1016/j.jnt.2009.09.018
Reference: [6] Lev, V. F.: Representing powers of 2 by a sum of four integers.Combinatorica 16 (1996), 413-416. Zbl 0862.11008, MR 1417350, 10.1007/BF01261325
Reference: [7] Nathanson, M. B., Sárközy, A.: Sumsets containing long arithmetic progressions and powers of 2.Acta Arith. 54 (1989), 147-154. Zbl 0693.10040, MR 1024423, 10.4064/aa-54-2-147-154
Reference: [8] Pan, H.: Note on integer powers in sumsets.J. Number Theory 117 (2006), 216-221. Zbl 1101.11045, MR 2204743, 10.1016/j.jnt.2005.06.007
.

Files

Files Size Format View
CzechMathJ_62-2012-3_15.pdf 223.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo