Title:
|
Sum and difference sets containing integer powers (English) |
Author:
|
Yang, Quan-Hui |
Author:
|
Wu, Jian-Dong |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
62 |
Issue:
|
3 |
Year:
|
2012 |
Pages:
|
787-793 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $n > m \geq 2$ be positive integers and $n=(m+1) \ell +r$, where $0 \leq r \leq m.$ Let $C$ be a subset of $\{0,1,\cdots ,n\}$. We prove that if $$ |C|>\begin {cases} \lfloor n/2 \rfloor +1 &\text {if $m$ is odd}, \\ m \ell /2 +\delta &\text {if $m$ is even},\\ \end {cases} $$ where $\lfloor x \rfloor $ denotes the largest integer less than or equal to $x$ and $\delta $ denotes the cardinality of even numbers in the interval $[0,\min \{r,m-2\}]$, then $C-C$ contains a power of $m$. We also show that these lower bounds are best possible. (English) |
Keyword:
|
sum and difference set |
Keyword:
|
integer power |
MSC:
|
11B13 |
MSC:
|
11B30 |
idZBL:
|
Zbl 1265.11017 |
idMR:
|
MR2984634 |
DOI:
|
10.1007/s10587-012-0045-2 |
. |
Date available:
|
2012-11-10T21:17:10Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143025 |
. |
Reference:
|
[1] Alon, N.: Subset sums.J. Number Theory 27 (1987), 196-205. Zbl 0622.10042, MR 0909836, 10.1016/0022-314X(87)90061-8 |
Reference:
|
[2] Erdős, P.: Some problems and results on combinatorial number theory.Graph theory and its applications: East and West (Jinan, 1986). New York Academy of Sciences, Ann. N. Y. Acad. Sci. 576 (1989), 132-145. MR 1110810, 10.1111/j.1749-6632.1989.tb16392.x |
Reference:
|
[3] Erdős, P., Freiman, G.: On two additive problems.J. Number Theory 34 (1990), 1-12. MR 1039762, 10.1016/0022-314X(90)90047-U |
Reference:
|
[4] Freiman, G. A.: Sumsets and powers of 2.Sets, graphs and numbers. A birthday salute to Vera T. Sós and András Hajnal. Amsterdam: North-Holland Publishing Company. Colloq. Math. Soc. János Bolyai 60 (1992), 279-286. Zbl 0796.11005, MR 1218196 |
Reference:
|
[5] Kapoor, V.: Sets whose sumset avoids a thin sequence.J. Number Theory 130 (2010), 534-538. Zbl 1217.11013, MR 2584837, 10.1016/j.jnt.2009.09.018 |
Reference:
|
[6] Lev, V. F.: Representing powers of 2 by a sum of four integers.Combinatorica 16 (1996), 413-416. Zbl 0862.11008, MR 1417350, 10.1007/BF01261325 |
Reference:
|
[7] Nathanson, M. B., Sárközy, A.: Sumsets containing long arithmetic progressions and powers of 2.Acta Arith. 54 (1989), 147-154. Zbl 0693.10040, MR 1024423, 10.4064/aa-54-2-147-154 |
Reference:
|
[8] Pan, H.: Note on integer powers in sumsets.J. Number Theory 117 (2006), 216-221. Zbl 1101.11045, MR 2204743, 10.1016/j.jnt.2005.06.007 |
. |