Previous |  Up |  Next

Article

Title: Diversity in monoids (English)
Author: Maney, Jack
Author: Ponomarenko, Vadim
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 3
Year: 2012
Pages: 795-809
Summary lang: English
.
Category: math
.
Summary: Let $M$ be a (commutative cancellative) monoid. A nonunit element $q\in M$ is called almost primary if for all $a,b\in M$, $q\mid ab$ implies that there exists $k\in \mathbb {N}$ such that $q\mid a^k$ or $q\mid b^k$. We introduce a new monoid invariant, diversity, which generalizes this almost primary property. This invariant is developed and contextualized with other monoid invariants. It naturally leads to two additional properties (homogeneity and strong homogeneity) that measure how far an almost primary element is from being primary. Finally, as an application the authors consider factorizations into almost primary elements, which generalizes the established notion of factorization into primary elements. (English)
Keyword: factorization
Keyword: monoid
Keyword: diversity
MSC: 11B75
MSC: 11N80
MSC: 13A05
MSC: 20M05
MSC: 20M14
idZBL: Zbl 1265.20060
idMR: MR2984635
DOI: 10.1007/s10587-012-0046-1
.
Date available: 2012-11-10T21:18:01Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143026
.
Reference: [1] Anderson, D. D., Mahaney, L. A.: On primary factorizations.J. Pure Appl. Algebra 54 (1988), 141-154. Zbl 0665.13004, MR 0963540, 10.1016/0022-4049(88)90026-6
Reference: [2] Geroldinger, A.: Chains of factorizations in weakly Krull domains.Colloq. Math. 72 (1997), 53-81. Zbl 0874.13001, MR 1425546, 10.4064/cm-72-1-53-81
Reference: [3] Geroldinger, A., Halter-Koch, F.: Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory.Pure and Applied Mathematics (Boca Raton), vol. 278, Chapman & Hall/CRC, Boca Raton, FL (2006). Zbl 1113.11002, MR 2194494
Reference: [4] Geroldinger, A., Hassler, W.: Local tameness of {$v$}-{N}oetherian monoids.J. Pure Appl. Algebra 212 (2008), 1509-1524. Zbl 1133.20047, MR 2391663, 10.1016/j.jpaa.2007.10.020
Reference: [5] Halter-Koch, F.: Divisor theories with primary elements and weakly Krull domains.Boll. Unione Mat. Ital., VII. Ser., B 9 (1995), 417-441. Zbl 0849.20041, MR 1333970
Reference: [6] Halter-Koch, F.: Ideal Systems. An Introduction to Multiplicative Ideal Theory.Pure and Applied Mathematics, Marcel Dekker, vol. 211, New York (1998). Zbl 0953.13001, MR 1828371
.

Files

Files Size Format View
CzechMathJ_62-2012-3_16.pdf 295.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo