Previous |  Up |  Next

Article

Title: $m^*$-fuzzy basically disconnected spaces in smooth fuzzy topological spaces (English)
Author: Amudhambigai, B.
Author: Uma, M. K.
Author: Roja, E.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 138
Issue: 1
Year: 2013
Pages: 1-13
Summary lang: English
.
Category: math
.
Summary: In this paper, the concepts of $m^* r$-fuzzy $\tilde {g}$-open $F_{\sigma }$ sets and $m^*$-fuzzy basically disconnected spaces are introduced in the sense of Šostak and Ramadan. Some interesting properties and characterizations are studied. Tietze extension theorem for $m^*$-fuzzy basically disconnected spaces is discussed. (English)
Keyword: $m^*r$-fuzzy $\tilde {g}$-open $F_{\sigma }$ set
Keyword: $m^*$-fuzzy basically disconnected space
Keyword: $m^*r$-fuzzy open function
MSC: 03E72
MSC: 54A40
idZBL: Zbl 1274.54021
idMR: MR3076216
DOI: 10.21136/MB.2013.143223
.
Date available: 2013-03-02T18:46:25Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143223
.
Reference: [1] Amudhambigai, B., Uma, M. K., Roja, E.: Seperations axioms in smooth fuzzy topological spaces.Scientia Magna 5 (2009), 90-98. MR 2665986
Reference: [2] Chattopadhyay, K. C., Samanta, S. K.: Fuzzy topology: Fuzzy closure operator, fuzzy compactness and fuzzy connectedness.Fuzzy Sets Syst. 54 (1993), 207-212. MR 1215120
Reference: [3] Devi, D. Anitha, Roja, E., Uma, M. K.: Contra $G_\delta$-continuity in smooth fuzzy topological spaces.Math. Bohem. 134 (2009), 285-300. MR 2561307
Reference: [4] Kubiak, T.: $L$-fuzzy normal spaces and Tietze extension theorem.J. Math. Anal. Appl. 125 (1987), 141-153. Zbl 0643.54008, MR 0891354, 10.1016/0022-247X(87)90169-7
Reference: [5] Popa, V., Noiri, T.: On $M$-continuous functions.Anal. Univ. Dunarea de Jos Galati. Ser. Mat. Fiz. Mec. Teor. 18 (2000), 31-41. MR 1228422
Reference: [6] Popa, V., Noiri, T.: On the definitions of some generalized forms of continuity under minimal conditions.Mem. Fac. Sci., Kochi Univ., Ser. A 22 (2001), 9-18. Zbl 0972.54011, MR 1822060
Reference: [7] Rajesh, N., Ekici, E.: $\tilde{g}$-locally closed sets in topological spaces.Kochi J. Math 2 (2007), 1-9. MR 2308529
Reference: [8] Ramadan, A. A., Abbas, S. E., Kim, Yong Chan: Fuzzy irresolute mappings in smooth fuzzy topological spaces.J. Fuzzy Math. 9 (2001), 865-877. Zbl 0994.54009, MR 1879350
Reference: [9] Smets, P.: The degree of belief in a fuzzy event.Inf. Sci. 25 (1981), 1-19. Zbl 0472.62005, MR 0651984, 10.1016/0020-0255(81)90008-6
Reference: [10] Sugeno, M.: An introductory survey of fuzzy control.Inform. Sci. 36 (1985), 59-83. Zbl 0586.93053, MR 0813765, 10.1016/0020-0255(85)90026-X
Reference: [11] Šostak, A. P.: On a fuzzy topological structure.Rend. Circ. Mat. Palermo, II. Ser. Suppl. 11 (1985), 89-103. MR 0897975
Reference: [12] Thangaraj, G., Balasubramanian, G.: On fuzzy basically disconnected spaces.J. Fuzzy Math. 9 (2001), 103-110. Zbl 0973.54008, MR 1822319
Reference: [13] Zadeh, L. A.: Fuzzy sets.Inf. Control 8 (1965), 338-353. Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X
.

Files

Files Size Format View
MathBohem_138-2013-1_1.pdf 264.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo