Previous |  Up |  Next

Article

MSC: 08A02, 20N02
Keywords:
relational system; groupoid; directed system; $g$-homomorphism
Summary:
By a relational system we mean a couple $(A,R)$ where $A$ is a set and $R$ is a binary relation on $A$, i.e.\ $R\subseteq A\times A$. To every directed relational system $\mathcal {A}=(A,R)$ we assign a groupoid ${\mathcal G}({\mathcal A})=(A,\cdot )$ on the same base set where $xy=y$ if and only if $(x,y)\in R$. We characterize basic properties of $R$ by means of identities satisfied by ${\mathcal G}({\mathcal A})$ and show how homomorphisms between those groupoids are related to certain homomorphisms of relational systems.
References:
[1] Chajda, I.: Congruences in transitive relational systems. Miskolc Math. Notes 5 (2004), 19-23. MR 2040973 | Zbl 1047.08001
[2] Chajda, I.: Class preserving mappings of equivalence systems. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 43 (2004), 61-64. MR 2124603 | Zbl 1077.08001
[3] Chajda, I.: Homomorphisms of directed posets. Asian-Eur. J. Math. 1 (2008), 45-51. DOI 10.1142/S1793557108000059 | MR 2400299 | Zbl 1159.06002
[4] Chajda, I., Hošková, Š.: A characterization of cone preserving mappings of quasiordered sets. Miskolc Math. Notes 6 (2005), 147-152. MR 2199159 | Zbl 1095.08001
[5] Chajda, I., Länger, H.: Quotients and homomorphisms of relational systems. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 49 (2010), 37-47. MR 2796945 | Zbl 1241.08001
[6] Mal'cev, A. I.: Algebraic Systems. Springer, New York (1973). MR 0349384
[7] Pöschel, R.: Graph algebras and graph varieties. Algebra Univers. 27 (1990), 559-577. DOI 10.1007/BF01189000 | MR 1387902 | Zbl 0725.08002
[8] Riguet, J.: Relations binaires, fermetures, correspondances de Galois. Bull. Soc. Math. Fr. 76 (1948), 114-155 French. MR 0028814 | Zbl 0033.00603
Partner of
EuDML logo