Title:
|
Indecomposable (1,3)-groups and a matrix problem (English) |
Author:
|
Arnold, David M. |
Author:
|
Mader, Adolf |
Author:
|
Mutzbauer, Otto |
Author:
|
Solak, Ebru |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
63 |
Issue:
|
2 |
Year:
|
2013 |
Pages:
|
307-355 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Almost completely decomposable groups with a critical typeset of type $(1,3)$ and a $p$-primary regulator quotient are studied. It is shown that there are, depending on the exponent of the regulator quotient $p^k$, either no indecomposables if $k\leq 2$; only six near isomorphism types of indecomposables if $k=3$; and indecomposables of arbitrary large rank if $k\geq 4$. (English) |
Keyword:
|
almost completely decomposable group |
Keyword:
|
indecomposable |
Keyword:
|
representation |
MSC:
|
15A21 |
MSC:
|
16G20 |
MSC:
|
20K15 |
MSC:
|
20K25 |
MSC:
|
20K35 |
idZBL:
|
Zbl 06236414 |
idMR:
|
MR3073961 |
DOI:
|
10.1007/s10587-013-0020-6 |
. |
Date available:
|
2013-07-18T14:50:00Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143315 |
. |
Reference:
|
[1] Arnold, D. M.: Finite Rank Torsion-Free Abelian Groups and Rings. Lecture Notes 931.Springer Berlin (1982). MR 0665251 |
Reference:
|
[2] Arnold, D. M.: Abelian Groups and Representations of Partially Ordered Finite Sets. CMS Advanced Books in Mathematics.Springer New York (2000). MR 1764257 |
Reference:
|
[3] Arnold, D. M., Dugas, M.: Finite rank Butler groups with small typesets.Abelian Groups and Modules (Dublin 1998). Trends in Math. P. Eklof et al. Birkhäuser Basel (1998), 107-119. MR 1735562 |
Reference:
|
[4] Arnold, D. M., Simson, D.: Representations of finite partially ordered sets over commutative artinian uniserial rings.J. Pure Appl. Algebra 205 (2006), 640-659. Zbl 1106.16016, MR 2210222, 10.1016/j.jpaa.2005.07.017 |
Reference:
|
[5] Arnold, D. M., Simson, D.: Representations of finite posets over discrete valuation rings.Commun. Algebra 35 (2007), 3128-3144. Zbl 1142.16003, MR 2356147, 10.1080/00927870701405173 |
Reference:
|
[6] Arnold, D. M., Mader, A., Mutzbauer, O., Solak, E.: Almost completely decomposable groups and unbounded representation type.J. Algebra 349 (2012), 50-62. Zbl 1253.20057, MR 2853625, 10.1016/j.jalgebra.2011.10.019 |
Reference:
|
[7] Bondarenko, V. M.: Representations of bundles of semichained sets and their applications.St. Petersburg Math. J. 3 (1992), 973-996. MR 1186235 |
Reference:
|
[8] Burkhardt, R.: On a special class of almost completely decomposable groups I.Abelian Groups and Modules. Proc. Udine Con. 1984, CISM Courses and Lecture 287 R. Göbel at al. Springer Vienna (1984), 141-150. MR 0789813 |
Reference:
|
[9] Corner, A. L. S.: A note on rank and direct decompositions of torsion-free Abelian groups.Proc. Camb. Philos. Soc. 57 (1961), 230-233. Zbl 0100.02903, MR 0241530, 10.1017/S0305004100035106 |
Reference:
|
[10] Drozd, J. A.: Matrix problems and categories of matrices.J. Sov. Math. 3 (1975), 692-699. 10.1007/BF01084669 |
Reference:
|
[11] Dugas, M.: $BR$-groups with type set $(1,2)$.Forum Math. 13 (2001), 143-148. MR 1808437, 10.1515/form.2001.003 |
Reference:
|
[12] Faticoni, T., Schultz, P.: Direct decompositions of acd groups with primary regulating index.Abelian Groups and Modules. Proc. 1995 Colorado Springs Conference D. Arnold et al. Marcel Dekker New York (1996), 233-241. Zbl 0869.20038, MR 1415636 |
Reference:
|
[13] Fuchs, L.: Infinite Abelian Groups, Vol. II.Pure and Applied Mathematics 36 Academic Press, New York (1973). Zbl 0257.20035, MR 0349869 |
Reference:
|
[14] Jacobson, N.: Basic Algebra I.W. H. Freeman and Company San Francisco (1974). Zbl 0284.16001, MR 0356989 |
Reference:
|
[15] Lady, E. L.: Almost completely decomposable torsion-free Abelian groups.Proc. Am. Math. Soc. 45 (1974), 41-47. Zbl 0292.20051, MR 0349873, 10.1090/S0002-9939-1974-0349873-6 |
Reference:
|
[16] Lady, E. L.: Nearly isomorphic torsion-free abelian groups.J. Algebra 35 (1975), 235-238. Zbl 0322.20025, MR 0369568, 10.1016/0021-8693(75)90048-4 |
Reference:
|
[17] Mader, A.: Almost Completely Decomposable Groups.Gordon and Breach Amsterdam (2000). Zbl 0952.20043, MR 1751515 |
Reference:
|
[18] Mader, A., Strüngmann, L.: Generalized almost completely decomposable groups.Rend. Semin. Mat. Univ. Padova 113 (2005), 47-69. Zbl 1149.20045, MR 2168980 |
Reference:
|
[19] Mutzbauer, O.: Regulating subgroups of Butler groups.Abelian Groups. Proc. 1991 Curaçao Conf. Lecture Notes Pure Appl. Math. 146 L. Fuchs Marcel Dekker New York (1993), 209-216. Zbl 0801.20029, MR 1217272 |
Reference:
|
[20] Mutzbauer, O., Solak, E.: $(1,2)$-groups with $p^3$-regulator quotient.J. Algebra 320 (2008), 3821-3831. MR 2457724, 10.1016/j.jalgebra.2008.09.002 |
Reference:
|
[21] Nazarova, L. A., Roiter, A. V.: Finitely generated modules over a dyad of local Dedekind rings, and finite groups with an Abelian normal divisor of index $p$.Math. USSR Izv. 3 (1969), 65-89 Russian. 10.1070/IM1969v003n01ABEH000748 |
Reference:
|
[22] Nazarova, L. A., Roiter, A. V., Sergeichuk, V. V., Bondarenko, V. M.: Applications of modules over a dyad for the classification of finite $p$-groups possessing an Abelian subgroup of index $p$, and of pairs of mutually annihilating operators.J. Sov. Math. 3 (1975), 636-653 translation from Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 28 (1972),69-92 English. Russian original. MR 0332963, 10.1007/BF01084666 |
Reference:
|
[23] Sergeichuk, V. V.: Canonical matrices for linear matrix problems.Linear Algebra Appl. 317 (2000), 53-102. Zbl 0967.15007, MR 1782204, 10.1016/S0024-3795(00)00150-6 |
Reference:
|
[24] Shapiro, H.: A survey of canonical forms and invariants for unitary similarity.Linear Algebra Appl. 147 (1991), 101-167. Zbl 0723.15007, MR 1088662 |
Reference:
|
[25] Simson, D.: Linear Representations of Partially Ordered Sets and Vector Space Categories. Algebra, Logic and Applications Appl., Vol. 4.Gordon and Breach Brooklyn (2000). MR 1241646 |
Reference:
|
[26] Solak, E.: Almost completely decomposable groups of type $(1,2)$.Dissertation Würzburg. (2007). |
. |