Previous |  Up |  Next

Article

Title: On the mean value of Dedekind sum weighted by the quadratic Gauss sum (English)
Author: Wang, Tingting
Author: Zhang, Wenpeng
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 2
Year: 2013
Pages: 357-367
Summary lang: English
.
Category: math
.
Summary: Various properties of classical Dedekind sums $S(h, q)$ have been investigated by many authors. For example, Wenpeng Zhang, On the mean values of Dedekind sums, J. Théor. Nombres Bordx, 8 (1996), 429–442, studied the asymptotic behavior of the mean value of Dedekind sums, and H. Rademacher and E. Grosswald, Dedekind Sums, The Carus Mathematical Monographs No. 16, The Mathematical Association of America, Washington, D.C., 1972, studied the related properties. In this paper, we use the algebraic method to study the computational problem of one kind of mean value involving the classical Dedekind sum and the quadratic Gauss sum, and give several exact computational formulae for it. (English)
Keyword: Dedekind sum
Keyword: quadratic Gauss sum
Keyword: mean value
Keyword: identity
MSC: 11F20
MSC: 11L40
idZBL: Zbl 06236415
idMR: MR3073962
DOI: 10.1007/s10587-013-0021-5
.
Date available: 2013-07-18T14:50:56Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143316
.
Reference: [1] Apostol, T. M.: Introduction to Analytic Number Theory.Springer, New York (1976). Zbl 0335.10001, MR 0434929
Reference: [2] Apostol, T. M.: Modular Functions and Dirichlet Series in Number Theory.Springer, New York (1976). Zbl 0332.10017, MR 0422157
Reference: [3] Conrey, J. B., Fransen, E., Klein, R., Scott, C.: Mean values of Dedekind sums.J. Number Theory 56 (1996), 214-226. Zbl 0851.11028, MR 1373548, 10.1006/jnth.1996.0014
Reference: [4] Hua, L. K.: Introduction to Number Theory.Science Press, Peking Chinese (1964). Zbl 0221.10002, MR 0194380
Reference: [5] Jia, Ch.: On the mean value of Dedekind sums.J. Number Theory 87 (2001), 173-188. Zbl 0976.11044, MR 1824141, 10.1006/jnth.2000.2580
Reference: [6] Rademacher, H.: On the transformation of $\log \eta(\tau)$.J. Indian Math. Soc., n. Ser. 19 (1955), 25-30. Zbl 0064.32703, MR 0070660
Reference: [7] Rademacher, H., Grosswald, E.: Dedekind Sums.The Carus Mathematical Monographs No. 16, The Mathematical Association of America, Washington, D.C. (1972). Zbl 0251.10020, MR 0357299
Reference: [8] Weil, A.: On some exponential sums.Proc. Natl. Acad. Sci. USA 34 (1948), 204-207. Zbl 0032.26102, MR 0027006, 10.1073/pnas.34.5.204
Reference: [9] Zhang, W.: A note on the mean square value of the Dedekind sums.Acta Math. Hung. 86 (2000), 275-289. Zbl 0963.11049, MR 1756252, 10.1023/A:1006724724840
Reference: [10] Zhang, W.: On the mean values of Dedekind sums.J. Théor. Nombres Bordx. 8 (1996), 429-442. Zbl 0871.11033, MR 1438480, 10.5802/jtnb.179
.

Files

Files Size Format View
CzechMathJ_63-2013-2_3.pdf 246.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo