Previous |  Up |  Next

Article

Keywords:
Tauberian theorem; Laplace transform; the converse of Abel's theorem; Littlewood's Tauberian theorem; Abel and Cesàro summability; distributional Tauberian theorem; asymptotic behavior of generalized function
Summary:
We provide several general versions of Littlewood's Tauberian theorem. These versions are applicable to Laplace transforms of Schwartz distributions. We employ two types of Tauberian hypotheses; the first kind involves distributional boundedness, while the second type imposes a one-sided assumption on the Cesàro behavior of the distribution. We apply these Tauberian results to deduce a number of Tauberian theorems for power series and Stieltjes integrals where Cesàro summability follows from Abel summability. We also use our general results to give a new simple proof of the classical Littlewood one-sided Tauberian theorem for power series.
References:
[1] Çanak, I., Erdem, Y., Totur, Ü.: Some Tauberian theorems for $(A)(C,\alpha)$ summability method. Math. Comput. Modelling 52 (2010), 738-743. DOI 10.1016/j.mcm.2010.05.001 | MR 2661758 | Zbl 1202.40007
[2] Chandrasekharan, K., Minakshisundaram, S.: Typical Means. (Tata Institute of Fundamental Research. Monographs on mathematics and physics 1) Oxford University Press (1952). MR 0055458 | Zbl 0047.29901
[3] Drozzinov, J. N., Zav'jalov, B. I.: Quasi-asymptotics of generalized functions and Tauberian theorems in the complex domain. Math. USSR, Sb. 31 (1977), 329-345. DOI 10.1070/SM1977v031n03ABEH002306 | Zbl 0386.46035
[4] Estrada, R.: The Cesàro behaviour of distributions. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 454 (1998), 2425-2443. DOI 10.1098/rspa.1998.0265 | MR 1653364 | Zbl 0930.46035
[5] Estrada, R., Kanwal, R. P.: Asymptotic separation of variables. J. Math. Anal. Appl. 178 (1993), 130-142. DOI 10.1006/jmaa.1993.1296 | MR 1231732 | Zbl 0784.41023
[6] Estrada, R., Kanwal, R. P.: A Distributional Approach to Asymptotics. Theory and Applications. 2nd revised and expanded edition. Birkhäuser, Boston (2002). MR 1882228 | Zbl 1033.46031
[7] Estrada, R., Vindas, J.: On the point behavior of Fourier series and conjugate series. Z. Anal. Anwend. 29 (2010), 487-504. DOI 10.4171/ZAA/1420 | MR 2735485 | Zbl 1202.42015
[8] Estrada, R., Vindas, J.: On Tauber's second Tauberian theorem. Tohoku Math. J. 64 (2012), 539-560. DOI 10.2748/tmj/1356038977 | MR 3008237
[9] Hardy, G. H.: Divergent Series. At the Clarendon Press (Geoffrey Cumberlege) Oxford (1949). MR 0030620 | Zbl 0032.05801
[10] Hardy, G. H., Littlewood, J. E.: Contributions to the arithmetic theory of series. Proc. London Math. Soc. 11 (1913), 411-478. MR 1577235
[11] Hardy, G. H., Littlewood, J. E.: Tauberian theorems concerning power series and Dirichlet's series whose coefficients are positive. Proc. London Math. Soc. 13 (1914), 174-191. MR 1577498
[12] Hardy, G. H., Littlewood, J. E.: Notes on the theory of series. XVI.: Two Tauberian theorems. J. Lond. Math. Soc. 6 (1931), 281-286. DOI 10.1112/jlms/s1-6.4.281 | MR 1574634 | Zbl 0003.11202
[13] Ingham, A. E.: The equivalence theorem for Cesàro and Riesz summability. Publ. Ramanujan Inst. 1 (1968), 107-113. MR 0283455
[14] Korevaar, J.: Tauberian Theory. A Century of Developments. Grundlehren der Mathematischen Wissenschaften 329 Springer, Berlin (2004). DOI 10.1007/978-3-662-10225-1 | MR 2073637 | Zbl 1056.40002
[15] Littlewood, J. E.: The converse of Abel's theorem on power series. Proc. London Math. Soc. 9 (1911), 434-448. MR 1577317
[16] Pati, T.: On Tauberian theorems. Sequences, Summability and Fourier analysis Narosa Publishing House (2005), 234-251.
[17] Peetre, J.: On the value of a distribution at a point. Port. Math. 27 (1968), 149-159. MR 0463913 | Zbl 0205.42001
[18] Pilipović, S., Stanković, B.: Wiener Tauberian theorems for distributions. J. Lond. Math. Soc., II. Ser. 47 (1993), 507-515. DOI 10.1112/jlms/s2-47.3.507 | MR 1214912 | Zbl 0739.46032
[19] Pilipović, S., Stanković, B.: Tauberian theorems for integral transforms of distributions. Acta Math. Hung. 74 (1997), 135-153. DOI 10.1007/BF02697882 | MR 1428053 | Zbl 0921.46035
[20] Pilipović, S., Stanković, B., Vindas, J.: Asymptotic Behavior of Generalized Functions. Series on Analysis, Applications and Computations 5. World Scientific Hackensack, NJ (2012). MR 2895276
[21] Schwartz, L.: Théorie des Distributions. Nouvelle Édition, Entiérement Corrigée, Refondue et Augmentée. Publications de l'Institut de Mathématique de l'Université de Strasbourg Hermann, Paris (1966), French. MR 0209834 | Zbl 0149.09501
[22] Szász, O.: Converse theorems of summability for Dirichlet's series. Trans. Am. Math. Soc. 39 (1936), 117-130. DOI 10.2307/1989647 | MR 1501837 | Zbl 0013.26202
[23] Tauber, A.: Ein Satz aus der Theorie der unendlichen Reihen. Monatsh. Math. Phys. 8 (1897), 273-277 German. DOI 10.1007/BF01696278 | MR 1546472
[24] Vindas, J.: Structural theorems for quasiasymptotics of distributions at infinity. Publ. Inst. Math., Nouv. Sér. 84 (2008), 159-174. DOI 10.2298/PIM0898159V | MR 2488547 | Zbl 1199.46094
[25] Vindas, J., Estrada, R.: A Tauberian theorem for distributional point values. Arch. Math. 91 (2008), 247-253. DOI 10.1007/s00013-008-2683-z | MR 2439598 | Zbl 1169.46019
[26] Vindas, J., Pilipović, S.: Structural theorems for quasiasymptotics of distributions at the origin. Math. Nachr. 282 (2009), 1584-1599. DOI 10.1002/mana.200710090 | MR 2573468 | Zbl 1189.46032
[27] Vladimirov, V. S.: Methods of The Theory of Generalized Functions. Analytical Methods and Special Functions 6 Taylor & Francis, London (2002). MR 2012831 | Zbl 1078.46029
[28] Vladimirov, V. S., Drozzinov, J. N., Zav'jalov, B. I.: Tauberian Theorems for Generalized Functions. Mathematics and Its Applications (Soviet Series), 10 Kluwer Academic Publishers, Dordrecht (1988). MR 0947960
[29] Wiener, N.: Tauberian theorems. Ann. Math. (2) 33 (1932), 1-100. DOI 10.2307/1968102 | MR 1503035 | Zbl 0005.25003
Partner of
EuDML logo