Title:
|
Distributional versions of Littlewood's Tauberian theorem (English) |
Author:
|
Estrada, Ricardo |
Author:
|
Vindas, Jasson |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
63 |
Issue:
|
2 |
Year:
|
2013 |
Pages:
|
403-420 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We provide several general versions of Littlewood's Tauberian theorem. These versions are applicable to Laplace transforms of Schwartz distributions. We employ two types of Tauberian hypotheses; the first kind involves distributional boundedness, while the second type imposes a one-sided assumption on the Cesàro behavior of the distribution. We apply these Tauberian results to deduce a number of Tauberian theorems for power series and Stieltjes integrals where Cesàro summability follows from Abel summability. We also use our general results to give a new simple proof of the classical Littlewood one-sided Tauberian theorem for power series. (English) |
Keyword:
|
Tauberian theorem |
Keyword:
|
Laplace transform |
Keyword:
|
the converse of Abel's theorem |
Keyword:
|
Littlewood's Tauberian theorem |
Keyword:
|
Abel and Cesàro summability |
Keyword:
|
distributional Tauberian theorem |
Keyword:
|
asymptotic behavior of generalized function |
MSC:
|
40E05 |
MSC:
|
40G05 |
MSC:
|
40G10 |
MSC:
|
44A10 |
MSC:
|
46F12 |
MSC:
|
46F20 |
idZBL:
|
Zbl 06236419 |
idMR:
|
MR3073966 |
DOI:
|
10.1007/s10587-013-0025-1 |
. |
Date available:
|
2013-07-18T14:56:16Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143320 |
. |
Reference:
|
[1] Çanak, I., Erdem, Y., Totur, Ü.: Some Tauberian theorems for $(A)(C,\alpha)$ summability method.Math. Comput. Modelling 52 (2010), 738-743. Zbl 1202.40007, MR 2661758, 10.1016/j.mcm.2010.05.001 |
Reference:
|
[2] Chandrasekharan, K., Minakshisundaram, S.: Typical Means.(Tata Institute of Fundamental Research. Monographs on mathematics and physics 1) Oxford University Press (1952). Zbl 0047.29901, MR 0055458 |
Reference:
|
[3] Drozzinov, J. N., Zav'jalov, B. I.: Quasi-asymptotics of generalized functions and Tauberian theorems in the complex domain.Math. USSR, Sb. 31 (1977), 329-345. Zbl 0386.46035, 10.1070/SM1977v031n03ABEH002306 |
Reference:
|
[4] Estrada, R.: The Cesàro behaviour of distributions.Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 454 (1998), 2425-2443. Zbl 0930.46035, MR 1653364, 10.1098/rspa.1998.0265 |
Reference:
|
[5] Estrada, R., Kanwal, R. P.: Asymptotic separation of variables.J. Math. Anal. Appl. 178 (1993), 130-142. Zbl 0784.41023, MR 1231732, 10.1006/jmaa.1993.1296 |
Reference:
|
[6] Estrada, R., Kanwal, R. P.: A Distributional Approach to Asymptotics. Theory and Applications. 2nd revised and expanded edition.Birkhäuser, Boston (2002). Zbl 1033.46031, MR 1882228 |
Reference:
|
[7] Estrada, R., Vindas, J.: On the point behavior of Fourier series and conjugate series.Z. Anal. Anwend. 29 (2010), 487-504. Zbl 1202.42015, MR 2735485, 10.4171/ZAA/1420 |
Reference:
|
[8] Estrada, R., Vindas, J.: On Tauber's second Tauberian theorem.Tohoku Math. J. 64 (2012), 539-560. MR 3008237, 10.2748/tmj/1356038977 |
Reference:
|
[9] Hardy, G. H.: Divergent Series.At the Clarendon Press (Geoffrey Cumberlege) Oxford (1949). Zbl 0032.05801, MR 0030620 |
Reference:
|
[10] Hardy, G. H., Littlewood, J. E.: Contributions to the arithmetic theory of series.Proc. London Math. Soc. 11 (1913), 411-478. MR 1577235 |
Reference:
|
[11] Hardy, G. H., Littlewood, J. E.: Tauberian theorems concerning power series and Dirichlet's series whose coefficients are positive.Proc. London Math. Soc. 13 (1914), 174-191. MR 1577498 |
Reference:
|
[12] Hardy, G. H., Littlewood, J. E.: Notes on the theory of series. XVI.: Two Tauberian theorems.J. Lond. Math. Soc. 6 (1931), 281-286. Zbl 0003.11202, MR 1574634, 10.1112/jlms/s1-6.4.281 |
Reference:
|
[13] Ingham, A. E.: The equivalence theorem for Cesàro and Riesz summability.Publ. Ramanujan Inst. 1 (1968), 107-113. MR 0283455 |
Reference:
|
[14] Korevaar, J.: Tauberian Theory. A Century of Developments.Grundlehren der Mathematischen Wissenschaften 329 Springer, Berlin (2004). Zbl 1056.40002, MR 2073637, 10.1007/978-3-662-10225-1 |
Reference:
|
[15] Littlewood, J. E.: The converse of Abel's theorem on power series.Proc. London Math. Soc. 9 (1911), 434-448. MR 1577317 |
Reference:
|
[16] Pati, T.: On Tauberian theorems.Sequences, Summability and Fourier analysis Narosa Publishing House (2005), 234-251. |
Reference:
|
[17] Peetre, J.: On the value of a distribution at a point.Port. Math. 27 (1968), 149-159. Zbl 0205.42001, MR 0463913 |
Reference:
|
[18] Pilipović, S., Stanković, B.: Wiener Tauberian theorems for distributions.J. Lond. Math. Soc., II. Ser. 47 (1993), 507-515. Zbl 0739.46032, MR 1214912, 10.1112/jlms/s2-47.3.507 |
Reference:
|
[19] Pilipović, S., Stanković, B.: Tauberian theorems for integral transforms of distributions.Acta Math. Hung. 74 (1997), 135-153. Zbl 0921.46035, MR 1428053, 10.1007/BF02697882 |
Reference:
|
[20] Pilipović, S., Stanković, B., Vindas, J.: Asymptotic Behavior of Generalized Functions. Series on Analysis, Applications and Computations 5.World Scientific Hackensack, NJ (2012). MR 2895276 |
Reference:
|
[21] Schwartz, L.: Théorie des Distributions. Nouvelle Édition, Entiérement Corrigée, Refondue et Augmentée.Publications de l'Institut de Mathématique de l'Université de Strasbourg Hermann, Paris (1966), French. Zbl 0149.09501, MR 0209834 |
Reference:
|
[22] Szász, O.: Converse theorems of summability for Dirichlet's series.Trans. Am. Math. Soc. 39 (1936), 117-130. Zbl 0013.26202, MR 1501837, 10.2307/1989647 |
Reference:
|
[23] Tauber, A.: Ein Satz aus der Theorie der unendlichen Reihen.Monatsh. Math. Phys. 8 (1897), 273-277 German. MR 1546472, 10.1007/BF01696278 |
Reference:
|
[24] Vindas, J.: Structural theorems for quasiasymptotics of distributions at infinity.Publ. Inst. Math., Nouv. Sér. 84 (2008), 159-174. Zbl 1199.46094, MR 2488547, 10.2298/PIM0898159V |
Reference:
|
[25] Vindas, J., Estrada, R.: A Tauberian theorem for distributional point values.Arch. Math. 91 (2008), 247-253. Zbl 1169.46019, MR 2439598, 10.1007/s00013-008-2683-z |
Reference:
|
[26] Vindas, J., Pilipović, S.: Structural theorems for quasiasymptotics of distributions at the origin.Math. Nachr. 282 (2009), 1584-1599. Zbl 1189.46032, MR 2573468, 10.1002/mana.200710090 |
Reference:
|
[27] Vladimirov, V. S.: Methods of The Theory of Generalized Functions.Analytical Methods and Special Functions 6 Taylor & Francis, London (2002). Zbl 1078.46029, MR 2012831 |
Reference:
|
[28] Vladimirov, V. S., Drozzinov, J. N., Zav'jalov, B. I.: Tauberian Theorems for Generalized Functions.Mathematics and Its Applications (Soviet Series), 10 Kluwer Academic Publishers, Dordrecht (1988). MR 0947960 |
Reference:
|
[29] Wiener, N.: Tauberian theorems.Ann. Math. (2) 33 (1932), 1-100. Zbl 0005.25003, MR 1503035, 10.2307/1968102 |
. |