Previous |  Up |  Next

Article

Title: Distributional versions of Littlewood's Tauberian theorem (English)
Author: Estrada, Ricardo
Author: Vindas, Jasson
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 2
Year: 2013
Pages: 403-420
Summary lang: English
.
Category: math
.
Summary: We provide several general versions of Littlewood's Tauberian theorem. These versions are applicable to Laplace transforms of Schwartz distributions. We employ two types of Tauberian hypotheses; the first kind involves distributional boundedness, while the second type imposes a one-sided assumption on the Cesàro behavior of the distribution. We apply these Tauberian results to deduce a number of Tauberian theorems for power series and Stieltjes integrals where Cesàro summability follows from Abel summability. We also use our general results to give a new simple proof of the classical Littlewood one-sided Tauberian theorem for power series. (English)
Keyword: Tauberian theorem
Keyword: Laplace transform
Keyword: the converse of Abel's theorem
Keyword: Littlewood's Tauberian theorem
Keyword: Abel and Cesàro summability
Keyword: distributional Tauberian theorem
Keyword: asymptotic behavior of generalized function
MSC: 40E05
MSC: 40G05
MSC: 40G10
MSC: 44A10
MSC: 46F12
MSC: 46F20
idZBL: Zbl 06236419
idMR: MR3073966
DOI: 10.1007/s10587-013-0025-1
.
Date available: 2013-07-18T14:56:16Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143320
.
Reference: [1] Çanak, I., Erdem, Y., Totur, Ü.: Some Tauberian theorems for $(A)(C,\alpha)$ summability method.Math. Comput. Modelling 52 (2010), 738-743. Zbl 1202.40007, MR 2661758, 10.1016/j.mcm.2010.05.001
Reference: [2] Chandrasekharan, K., Minakshisundaram, S.: Typical Means.(Tata Institute of Fundamental Research. Monographs on mathematics and physics 1) Oxford University Press (1952). Zbl 0047.29901, MR 0055458
Reference: [3] Drozzinov, J. N., Zav'jalov, B. I.: Quasi-asymptotics of generalized functions and Tauberian theorems in the complex domain.Math. USSR, Sb. 31 (1977), 329-345. Zbl 0386.46035, 10.1070/SM1977v031n03ABEH002306
Reference: [4] Estrada, R.: The Cesàro behaviour of distributions.Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 454 (1998), 2425-2443. Zbl 0930.46035, MR 1653364, 10.1098/rspa.1998.0265
Reference: [5] Estrada, R., Kanwal, R. P.: Asymptotic separation of variables.J. Math. Anal. Appl. 178 (1993), 130-142. Zbl 0784.41023, MR 1231732, 10.1006/jmaa.1993.1296
Reference: [6] Estrada, R., Kanwal, R. P.: A Distributional Approach to Asymptotics. Theory and Applications. 2nd revised and expanded edition.Birkhäuser, Boston (2002). Zbl 1033.46031, MR 1882228
Reference: [7] Estrada, R., Vindas, J.: On the point behavior of Fourier series and conjugate series.Z. Anal. Anwend. 29 (2010), 487-504. Zbl 1202.42015, MR 2735485, 10.4171/ZAA/1420
Reference: [8] Estrada, R., Vindas, J.: On Tauber's second Tauberian theorem.Tohoku Math. J. 64 (2012), 539-560. MR 3008237, 10.2748/tmj/1356038977
Reference: [9] Hardy, G. H.: Divergent Series.At the Clarendon Press (Geoffrey Cumberlege) Oxford (1949). Zbl 0032.05801, MR 0030620
Reference: [10] Hardy, G. H., Littlewood, J. E.: Contributions to the arithmetic theory of series.Proc. London Math. Soc. 11 (1913), 411-478. MR 1577235
Reference: [11] Hardy, G. H., Littlewood, J. E.: Tauberian theorems concerning power series and Dirichlet's series whose coefficients are positive.Proc. London Math. Soc. 13 (1914), 174-191. MR 1577498
Reference: [12] Hardy, G. H., Littlewood, J. E.: Notes on the theory of series. XVI.: Two Tauberian theorems.J. Lond. Math. Soc. 6 (1931), 281-286. Zbl 0003.11202, MR 1574634, 10.1112/jlms/s1-6.4.281
Reference: [13] Ingham, A. E.: The equivalence theorem for Cesàro and Riesz summability.Publ. Ramanujan Inst. 1 (1968), 107-113. MR 0283455
Reference: [14] Korevaar, J.: Tauberian Theory. A Century of Developments.Grundlehren der Mathematischen Wissenschaften 329 Springer, Berlin (2004). Zbl 1056.40002, MR 2073637, 10.1007/978-3-662-10225-1
Reference: [15] Littlewood, J. E.: The converse of Abel's theorem on power series.Proc. London Math. Soc. 9 (1911), 434-448. MR 1577317
Reference: [16] Pati, T.: On Tauberian theorems.Sequences, Summability and Fourier analysis Narosa Publishing House (2005), 234-251.
Reference: [17] Peetre, J.: On the value of a distribution at a point.Port. Math. 27 (1968), 149-159. Zbl 0205.42001, MR 0463913
Reference: [18] Pilipović, S., Stanković, B.: Wiener Tauberian theorems for distributions.J. Lond. Math. Soc., II. Ser. 47 (1993), 507-515. Zbl 0739.46032, MR 1214912, 10.1112/jlms/s2-47.3.507
Reference: [19] Pilipović, S., Stanković, B.: Tauberian theorems for integral transforms of distributions.Acta Math. Hung. 74 (1997), 135-153. Zbl 0921.46035, MR 1428053, 10.1007/BF02697882
Reference: [20] Pilipović, S., Stanković, B., Vindas, J.: Asymptotic Behavior of Generalized Functions. Series on Analysis, Applications and Computations 5.World Scientific Hackensack, NJ (2012). MR 2895276
Reference: [21] Schwartz, L.: Théorie des Distributions. Nouvelle Édition, Entiérement Corrigée, Refondue et Augmentée.Publications de l'Institut de Mathématique de l'Université de Strasbourg Hermann, Paris (1966), French. Zbl 0149.09501, MR 0209834
Reference: [22] Szász, O.: Converse theorems of summability for Dirichlet's series.Trans. Am. Math. Soc. 39 (1936), 117-130. Zbl 0013.26202, MR 1501837, 10.2307/1989647
Reference: [23] Tauber, A.: Ein Satz aus der Theorie der unendlichen Reihen.Monatsh. Math. Phys. 8 (1897), 273-277 German. MR 1546472, 10.1007/BF01696278
Reference: [24] Vindas, J.: Structural theorems for quasiasymptotics of distributions at infinity.Publ. Inst. Math., Nouv. Sér. 84 (2008), 159-174. Zbl 1199.46094, MR 2488547, 10.2298/PIM0898159V
Reference: [25] Vindas, J., Estrada, R.: A Tauberian theorem for distributional point values.Arch. Math. 91 (2008), 247-253. Zbl 1169.46019, MR 2439598, 10.1007/s00013-008-2683-z
Reference: [26] Vindas, J., Pilipović, S.: Structural theorems for quasiasymptotics of distributions at the origin.Math. Nachr. 282 (2009), 1584-1599. Zbl 1189.46032, MR 2573468, 10.1002/mana.200710090
Reference: [27] Vladimirov, V. S.: Methods of The Theory of Generalized Functions.Analytical Methods and Special Functions 6 Taylor & Francis, London (2002). Zbl 1078.46029, MR 2012831
Reference: [28] Vladimirov, V. S., Drozzinov, J. N., Zav'jalov, B. I.: Tauberian Theorems for Generalized Functions.Mathematics and Its Applications (Soviet Series), 10 Kluwer Academic Publishers, Dordrecht (1988). MR 0947960
Reference: [29] Wiener, N.: Tauberian theorems.Ann. Math. (2) 33 (1932), 1-100. Zbl 0005.25003, MR 1503035, 10.2307/1968102
.

Files

Files Size Format View
CzechMathJ_63-2013-2_7.pdf 299.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo