Previous |  Up |  Next

Article

Keywords:
semidualizing bimodule; totally reflexive module; Bass class; precover; preenvelope
Summary:
Let $S$ and $R$ be two associative rings, let $ _{S}C_{R}$ be a semidualizing $(S,R)$-bimodule. We introduce and investigate properties of the totally reflexive module with respect to $_{S}C_{R}$ and we give a characterization of the class of the totally $C_{R}$-reflexive modules over any ring $R$. Moreover, we show that the totally $C_{R}$-reflexive module with finite projective dimension is exactly the finitely generated projective right $R$-module. We then study the relations between the class of totally reflexive modules and the Bass class with respect to a semidualizing bimodule. The paper contains several results which are new in the commutative Noetherian setting.
References:
[1] Auslander, M., Mangeney, M., Peskine, Ch., Szpiro, L.: Anneaux de Gorenstein, et Torsion en Algèbre Commutative. Ecole Normale Supérieure de Jeunes Filles, Paris (1967), French.
[2] Auslander, M., Bridger, M.: Stable Module Theory. Mem. Am. Math. Soc. 94 (1969). MR 0269685 | Zbl 0204.36402
[3] Araya, T., Takahashi, R., Yoshino, Y.: Homological invariants associated to semi-dualizing bimodules. J. Math. Kyoto Univ. 45 (2005), 287-306. MR 2161693 | Zbl 1096.16001
[4] Christensen, L. W.: Gorenstein Dimensions. Lecture Notes in Mathematics 1747, Springer, Berlin (2000). DOI 10.1007/BFb0103984 | MR 1799866 | Zbl 0965.13010
[5] Christensen, L. W., Frankild, A., Holm, H.: On Gorenstein projective, injective and flat dimensions---a functorial description with applications. J. Algebra 302 (2006), 231-279. DOI 10.1016/j.jalgebra.2005.12.007 | MR 2236602 | Zbl 1104.13008
[6] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. De Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2000). MR 1753146 | Zbl 0952.13001
[7] Foxby, H.-B.: Gorenstein modules and related modules. Math. Scand. 31 (1972), 267-284. MR 0327752
[8] Golod, E. S.: G-dimension and generalized perfect ideals. Tr. Mat. Inst. Steklova 165 (1984), 62-66. MR 0752933 | Zbl 0577.13008
[9] Holm, H.: Gorenstein homological dimensions. J. Pure Appl. Algebra 189 (2004), 167-193. DOI 10.1016/j.jpaa.2003.11.007 | MR 2038564 | Zbl 1050.16003
[10] Holm, H., Jørgensen, P.: Semi-dualizing modules and related Gorenstein homological dimensions. J. Pure Appl. Algebra 205 (2006), 423-445. DOI 10.1016/j.jpaa.2005.07.010 | MR 2203625
[11] Holm, H., Jørgensen, P.: Cotorsion pairs induced by duality pairs. J. Commut. Algebra 1 (2009), 621-633. DOI 10.1216/JCA-2009-1-4-621 | MR 2575834
[12] Holm, H., White, D.: Foxby equivalence over associative rings. J. Math. Kyoto Univ. 47 (2007), 781-808. MR 2413065 | Zbl 1154.16007
[13] Mantese, F., Reiten, I.: Wakamatsu tilting modules. J. Algebra 278 (2004), 532-552. DOI 10.1016/j.jalgebra.2004.03.023 | MR 2071651 | Zbl 1075.16006
[14] Sather-Wagstaff, S.: Semidualizing modules and the divisor class group. Ill. J. Math. 51 255-285 (2007). MR 2346197 | Zbl 1127.13007
[15] Sather-Wagstaff, S., Sharif, T., White, D.: AB-contexts and stability for Gorenstein flat modules with respect to semidualizing modules. Algebr. Represent. Theory 14 403-428 (2011). DOI 10.1007/s10468-009-9195-9 | MR 2785915
[16] Sather-Wagstaff, S., Sharif, T., White, D.: Tate cohomology with respect to semidualizing modules. J. Algebra 324 (2010), 2336-2368. DOI 10.1016/j.jalgebra.2010.07.007 | MR 2684143 | Zbl 1207.13009
[17] Sather-Wagstaff, S., Sharif, T., White, D.: Comparison of relative cohomology theories with respect to semidualizing modules. Math. Z. 264 (2010), 571-600. DOI 10.1007/s00209-009-0480-4 | MR 2591820 | Zbl 1190.13007
[18] Takahashi, R., White, D.: Homological aspects of semidualizing modules. Math. Scand. 106 (2010), 5-22. MR 2603458 | Zbl 1193.13012
[19] Vasconcelos, W. V.: Divisor Theory in Module Categories. North-Holland Mathematics Studies 14. Notas de Matematica 5. North-Holland Publishing Comp., Amsterdam (1974). MR 0498530 | Zbl 0296.13005
[20] Wakamatsu, T.: Tilting modules and Auslander's Gorenstein property. J. Algebra 275 (2004), 3-39. DOI 10.1016/j.jalgebra.2003.12.008 | MR 2047438 | Zbl 1076.16006
[21] White, D.: Gorenstein projective dimension with respect to a semidualizing module. J. Commut. Algebra 2 (2010), 111-137. DOI 10.1216/JCA-2010-2-1-111 | MR 2607104
[22] Yassemi, S.: $G$-dimension. Math. Scand. 77 (1995), 161-174. MR 1379262 | Zbl 0864.13010
Partner of
EuDML logo