Previous |  Up |  Next

Article

Title: On the reflexivity of subspaces of Toeplitz operators on the Hardy space on the upper half-plane (English)
Author: Młocek, Wojciech
Author: Ptak, Marek
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 2
Year: 2013
Pages: 421-434
Summary lang: English
.
Category: math
.
Summary: The reflexivity and transitivity of subspaces of Toeplitz operators on the Hardy space on the upper half-plane are investigated. The dichotomic behavior (transitive or reflexive) of these subspaces is shown. It refers to the similar dichotomic behavior for subspaces of Toeplitz operators on the Hardy space on the unit disc. The isomorphism between the Hardy spaces on the unit disc and the upper half-plane is used. To keep weak* homeomorphism between $L^\infty $ spaces on the unit circle and the real line we redefine the classical isomorphism between $L^1$ spaces. (English)
Keyword: reflexive subspace
Keyword: transitive subspace
Keyword: Toeplitz operator
Keyword: Hardy space
Keyword: upper half-plane
MSC: 47B35
MSC: 47L05
MSC: 47L45
MSC: 47L80
idZBL: Zbl 06236420
idMR: MR3073967
DOI: 10.1007/s10587-013-0026-0
.
Date available: 2013-07-18T14:57:25Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143321
.
Reference: [1] Azoff, E. A., Ptak, M.: A dichotomy for linear spaces of Toeplitz operators.J. Funct. Anal. 156 411-428 (1998). Zbl 0922.47021, MR 1636960, 10.1006/jfan.1998.3275
Reference: [2] Bercovici, H., Foiaş, C., Pearcy, C.: Dual Algebras with Applications to Invariant Subspaces and Dilation Theory.Reg. Conf. Ser. Math. 56, 1985. Zbl 0569.47007, 10.1090/cbms/056
Reference: [3] Brown, S., Chevreau, B., Pearcy, C.: Contractions with rich spectrum have invariant subspaces.J. Oper. Theory 1 (1979), 123-136. Zbl 0449.47003, MR 0526294
Reference: [4] Conway, J. B.: A Course in Functional Analysis. 2nd ed.Graduate Texts in Mathematics, 96. Springer, New York (1990). Zbl 0706.46003, MR 1070713
Reference: [5] Conway, J. B.: A Course in Operator Theory.Graduate Studies in Mathematics 21, American Mathematical Society, Providence (2000). Zbl 0936.47001, MR 1721402
Reference: [6] Douglas, R. G.: Banach Algebra Techniques in Operator Theory.Pure and Applied Mathematics, 49. Academic Press, New York (1972). Zbl 0247.47001, MR 0361893
Reference: [7] Duren, P. L.: Theory of $H^p$ Spaces.Pure and Applied Mathematics, 38. Academic Press, New York-London (1970). MR 0268655
Reference: [8] Hoffman, K.: Banach Spaces of Analytic Functions.Prentice-Hall Series in Modern Analysis, Englewood Cliffs, N.J., Prentice-Hall (1962). Zbl 0117.34001, MR 0133008
Reference: [9] Koosis, P.: Introduction to $H_p$ Spaces.London Mathematical Society Lecture Note Series. 40. Cambridge University Press, Cambridge (1980). Zbl 0435.30001, MR 0565451
Reference: [10] Nikolski, N. K.: Operators, Functions, and Systems: An Easy Reading. Volume I: Hardy, Hankel, and Toeplitz. Transl. from the French by Andreas Hartmann.Mathematical Surveys and Monographs, 92. American Mathematical Society, Providence (2002). Zbl 1007.47001, MR 1864396
Reference: [11] Sarason, D.: Invariant subspaces and unstarred operator algebras.Pac. J. Math. 17 (1966), 511-517. Zbl 0171.33703, MR 0192365, 10.2140/pjm.1966.17.511
.

Files

Files Size Format View
CzechMathJ_63-2013-2_8.pdf 290.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo