Previous |  Up |  Next

Article

Title: Remarks on star countable discrete closed spaces (English)
Author: Song, Yan-Kui
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 2
Year: 2013
Pages: 451-460
Summary lang: English
.
Category: math
.
Summary: In this paper, we prove the following statements: (1) There exists a Tychonoff star countable discrete closed, pseudocompact space having a regular-closed subspace which is not star countable. (2) Every separable space can be embedded into an absolutely star countable discrete closed space as a closed subspace. (3) Assuming $2^{\aleph _0}=2^{\aleph _1}$, there exists a normal absolutely star countable discrete closed space having a regular-closed subspace which is not star countable. (English)
Keyword: pseudocompact
Keyword: normal
Keyword: Tychonoff
Keyword: star countable
Keyword: absolutely star countable
Keyword: star countable discrete closed
Keyword: absolutely star countable discrete closed space
MSC: 54D20
idZBL: Zbl 06236423
idMR: MR3073970
DOI: 10.1007/s10587-013-0029-x
.
Date available: 2013-07-18T15:00:31Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143324
.
Reference: [1] Aiken, L. P.: Star-covering properties: generalized $\Psi$-spaces, countability conditions, reflection.Topology Appl. 158 (2011), 1732-1737. Zbl 1223.54029, MR 2812483, 10.1016/j.topol.2011.06.032
Reference: [2] Alas, O. T., Junqueira, L. R., Wilson, R. G.: Countability and star covering properties.Topology Appl. 158 (2011), 620-626. Zbl 1226.54023, MR 2765618, 10.1016/j.topol.2010.12.012
Reference: [3] Alas, O. T., Junqueira, L. R., Mill, J. van, Tkachuk, V. V., Wilson, R. G.: On the extent of star countable spaces.Cent. Eur. J. Math. 9 (2011), 603-615. MR 2784032, 10.2478/s11533-011-0018-y
Reference: [4] Bonanzinga, M.: Star-Lindelöf and absolutely star-Lindelöf spaces.Questions Answers Gen. Topology. 16 (1998), 79-104. Zbl 0931.54019, MR 1642032
Reference: [5] Engelking, R.: General Topology. Rev. and compl. ed.Sigma Series in Pure Mathematics 6, Heldermann, Berlin (1989). Zbl 0684.54001, MR 1039321
Reference: [6] Matveev, M. V.: Absolutely countably compact spaces.Topology Appl. 58 (1994), 81-92. Zbl 0801.54021, MR 1280711, 10.1016/0166-8641(94)90074-4
Reference: [7] Matveev, M. V.: A survey on star-covering properties.Topological Atlas preprint No 330 (1998).
Reference: [8] Matveev, M. V.: On space in countable web.arxiv:math/0006199v1 (2000).
Reference: [9] Song, Y.-K.: Discretely star-Lindelöf spaces.Tsukuba J. Math. 25 (2001), 371-382. Zbl 1011.54020, MR 1869769, 10.21099/tkbjm/1496164294
Reference: [10] Song, Y.-K.: Closed subsets of absolutely star-Lindelöf spaces II.Commentat. Math. Univ. Carol. 44 (2003), 329-334. Zbl 1100.54017, MR 2026167
Reference: [11] Song, Y.-K.: Remarks on discretely absolutely star-Lindelöf spaces.Czech. Math. J. 58 (2008), 823-831. MR 2455940, 10.1007/s10587-008-0053-4
Reference: [12] Song, Y.-K.: Remarks on countability and star covering properties.Topology Appl. 158 (2011), 1121-1123. Zbl 1220.54008, MR 2794466, 10.1016/j.topol.2011.03.006
Reference: [13] Tall, F. D.: Normality versus collectionwise normality.Handbook of Set-Theoretic Topology K. Kunen and J. E. Vaughan North-Holland, Amsterdam (1984), 685-732. Zbl 0552.54011, MR 0776634
Reference: [14] Douwen, E. K. van, Reed, G. M., Roscoe, A. W., Tree, I. J.: Star covering properties.Topology Appl. 39 (1991), 71-103. MR 1103993, 10.1016/0166-8641(91)90077-Y
Reference: [15] Mill, J. van, Tkachuk, V. V., Wilson, R. G.: Classes defined by stars and neighbourhood assignments.Topology Appl. 154 (2007), 2127-2134. MR 2324924, 10.1016/j.topol.2006.03.029
Reference: [16] Vaughan, J. E.: On the product of a compact space with an absolutely countably compact space.Ann. N. Y. Acad. Sci. 788 (1996), 203-208. Zbl 0917.54023, MR 1460834, 10.1111/j.1749-6632.1996.tb36814.x
Reference: [17] Yasui, Y., Gao, Z.-M.: Spaces in countable web.Houston J. Math. 25 (1999), 327-335. Zbl 0974.54011, MR 1697629
.

Files

Files Size Format View
CzechMathJ_63-2013-2_11.pdf 247.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo