Previous |  Up |  Next

Article

Title: Strongly $\mathcal {W}$-Gorenstein modules (English)
Author: Qiao, Husheng
Author: Xie, Zongyang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 2
Year: 2013
Pages: 441-449
Summary lang: English
.
Category: math
.
Summary: Let $\mathcal {W}$ be a self-orthogonal class of left $R$-modules. We introduce a class of modules, which is called strongly $\mathcal {W}$-Gorenstein modules, and give some equivalent characterizations of them. Many important classes of modules are included in these modules. It is proved that the class of strongly $\mathcal {W}$-Gorenstein modules is closed under finite direct sums. We also give some sufficient conditions under which the property of strongly $\mathcal {W}$-Gorenstein module can be inherited by its submodules and quotient modules. As applications, many known results are generalized. (English)
Keyword: self-orthogonal class
Keyword: strongly $\mathcal {W}$-Gorenstein module
Keyword: $\mathcal {C}$-resolution
MSC: 16D40
MSC: 16D50
MSC: 16E05
MSC: 16E65
MSC: 18G20
MSC: 18G25
idZBL: Zbl 06236422
idMR: MR3073969
DOI: 10.1007/s10587-013-0028-y
.
Date available: 2013-07-18T14:59:15Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143323
.
Reference: [1] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules. 2. ed., Graduate Texts in Mathematics 13.Springer New York (1992). MR 1245487
Reference: [2] Auslander, M., Bridger, M.: Stable module theory.Mem. Am. Math. Soc. 94 (1969). Zbl 0204.36402, MR 0269685
Reference: [3] Bennis, D., Mahdou, N.: Strongly Gorenstein projective, injective, and flat modules.J. Pure Appl. Algebra 210 (2007), 437-445. Zbl 1118.13014, MR 2320007, 10.1016/j.jpaa.2006.10.010
Reference: [4] Enochs, E. E., Jenda, O. M. G.: Gorenstein injective and projective modules.Math. Z. 220 (1995), 611-633. Zbl 0845.16005, MR 1363858, 10.1007/BF02572634
Reference: [5] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. Vol. 2. 2nd revised ed., de Gruyter Expositions in Mathematics 54.Walter de Gruyter Berlin (2000). MR 1753146
Reference: [6] Enochs, E. E., Jenda, O. M. G.: On $D$-Gorenstein modules.Interactions between ring theory and representations of algebras. Proceedings of the conference, Murcia Marcel Dekker New York (2000), 159-168. Zbl 0989.13018, MR 1758408
Reference: [7] Enochs, E. E., Jenda, O. M. G.: $\Omega$-Gorenstein projective and flat covers and $\Omega$-Gorenstein injective envelopes.Commun. Algebra 32 (2004), 1453-1470. Zbl 1092.13031, MR 2100367, 10.1081/AGB-120028791
Reference: [8] Enochs, E. E., Jenda, O. M. G., López-Ramos, J. A.: Covers and envelopes by $V$-Gorenstein modules.Commun. Algebra 33 (2005), 4705-4717. Zbl 1087.16002, MR 2188336, 10.1080/00927870500328766
Reference: [9] Geng, Y., Ding, N.: $\mathcal{W}$-Gorenstein modules.J. Algebra 325 (2011), 132-146. MR 2745532, 10.1016/j.jalgebra.2010.09.040
Reference: [10] Sather-Wagstaff, S., Sharif, T., White, D.: Stability of Gorenstein categories.J. Lond. Math. Soc., II. Ser. 77 (2008), 481-502. Zbl 1140.18010, MR 2400403, 10.1112/jlms/jdm124
Reference: [11] Wei, J.: $\omega$-Gorenstein modules.Commun. Algebra 36 (2008), 1817-1829. Zbl 1153.16009, MR 2424268, 10.1080/00927870801940897
Reference: [12] Yang, X., Liu, Z.: Strongly Gorenstein projective, injective and flat modules.J. Algebra 320 (2008), 2659-2674. Zbl 1173.16006, MR 2441993, 10.1016/j.jalgebra.2008.07.006
.

Files

Files Size Format View
CzechMathJ_63-2013-2_10.pdf 243.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo