Previous |  Up |  Next

Article

Title: Estimates in the Hardy-Sobolev space of the annulus and stability result (English)
Author: Feki, Imed
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 2
Year: 2013
Pages: 481-495
Summary lang: English
.
Category: math
.
Summary: The main purpose of this work is to establish some logarithmic estimates of optimal type in the Hardy-Sobolev space $H^{k,\infty }$; $k \in {\mathbb {N}}^*$ of an annular domain. These results are considered as a continuation of a previous study in the setting of the unit disk by L. Baratchart and M. Zerner, On the recovery of functions from pointwise boundary values in a Hardy-Sobolev class of the disk, J. Comput. Appl. Math. 46 (1993), 255–269 and by S. Chaabane and I. Feki, Optimal logarithmic estimates in Hardy-Sobolev spaces $H^{k,\infty }$, C. R., Math., Acad. Sci. Paris 347 (2009), 1001–1006. As an application, we prove a logarithmic stability result for the inverse problem of identifying a Robin parameter on a part of the boundary of an annular domain starting from its behavior on the complementary boundary part. (English)
Keyword: annular domain
Keyword: Poisson kernel
Keyword: Hardy-Sobolev space
Keyword: logarithmic estimate
Keyword: Robin parameter
MSC: 30C40
MSC: 30H10
MSC: 35R30
idZBL: Zbl 06236426
idMR: MR3073973
DOI: 10.1007/s10587-013-0032-2
.
Date available: 2013-07-18T15:04:13Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143327
.
Reference: [1] Alessandrini, G., Piere, L. Del, Rondi, L.: Stable determination of corrosion by a single electrostatic boundary measurement.Inverse Probl. 19 (2003), 973-984. MR 2005313
Reference: [2] Baratchard, L., Zerner, M.: On the recovery of functions from pointwise boundary values in a Hardy-Sobolev class of the disk.J. Comput. Appl. Math. 46 (1993), 255-269. Zbl 0818.65017, MR 1222486, 10.1016/0377-0427(93)90300-Z
Reference: [3] Baratchart, L., Leblond, J., Partington, J. R.: Hardy approximation to $L^\infty$ functions on subsets of the circle.Constructive Approximation 12 (1996), 423-435. MR 1405007
Reference: [4] Brézis, H.: Analyse fonctionnelle. Théorie et applications.Masson Paris (1983), French. MR 0697382
Reference: [5] Chaabane, S., Feki, I.: Optimal logarithmic estimates in Hardy-Sobolev spaces $H^{k,\infty}$.C. R., Math., Acad. Sci. Paris 347 (2009), 1001-1006. MR 2554565, 10.1016/j.crma.2009.07.018
Reference: [6] Chaabane, S., Jaoua, M.: Identification of Robin coefficients by the means of boundary measurements.Inverse Probl. 15 (1999), 1425-1438. Zbl 0943.35100, MR 1733209
Reference: [7] Chaabane, S., Fellah, I., Jaoua, M., Leblond, J.: Logarithmic stability estimates for a Robin coefficient in two-dimensional Laplace inverse problems.Inverse Probl. 20 (2004), 47-59. Zbl 1055.35135, MR 2044605
Reference: [8] Chaabane, S., Jaoua, M., Leblond, J.: Parameter identification for Laplace equation and approximation in Hardy classes.J. Inverse Ill-Posed Probl. 11 (2003), 33-57. Zbl 1028.35163, MR 1972169, 10.1515/156939403322004928
Reference: [9] Chaabane, S., Ferchichi, J., Kunisch, K.: Differentiability properties of the $L^{1}$-tracking functional and application to the Robin inverse problem.Inverse Probl. 20 (2004), 1083-1097. MR 2087981
Reference: [10] Chalendar, I., Partington, J. R.: Approximation problems and representations of Hardy spaces in circular domains.Stud. Math. 136 (1999), 255-269. Zbl 0952.30033, MR 1724247
Reference: [11] Chevreau, B., Pearcy, C. M., Shields, A. L.: Finitely connected domains $G$, representations of $H^{\infty}(G)$, and invariant subspaces.J. Oper. Theory 6 (1981), 375-405. MR 0643698
Reference: [12] Duren, P. L.: Theory of $H^p$ Spaces.Academic Press New York (1970). MR 0268655
Reference: [13] Gaier, D., Pommerenke, C.: On the boundary behavior of conformal maps.Mich. Math. J. 14 (1967), 79-82. Zbl 0182.10204, MR 0204631, 10.1307/mmj/1028999660
Reference: [14] Leblond, J., Mahjoub, M., Partington, J. R.: Analytic extensions and Cauchy-type inverse problems on annular domains: stability results.J. Inverse Ill-Posed Probl. 14 (2006), 189-204. Zbl 1111.35121, MR 2242304, 10.1515/156939406777571049
Reference: [15] Meftahi, H., Wielonsky, F.: Growth estimates in the Hardy-Sobolev space of an annular domain with applications.J. Math. Anal. Appl. 358 (2009), 98-109. Zbl 1176.46029, MR 2527584, 10.1016/j.jmaa.2009.04.040
Reference: [16] Nirenberg, L.: An extended interpolation inequality.Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 20 (1966), 733-737. Zbl 0163.29905, MR 0208360
Reference: [17] Rudin, W.: Analytic functions of class $H^p$.Trans. Am. Math. Soc. 78 (1955), 46-66. MR 0067993
Reference: [18] Sarason, D.: The $H^p$ Spaces of An Annulus.Mem. Am. Math. Soc. 56 (1965), Providence, RI. MR 0188824
Reference: [19] Wang, H.-C.: Real Hardy spaces of an annulus.Bull. Austral. Math. Soc. 27 (1983), 91-105. Zbl 0512.42023, MR 0696647, 10.1017/S0004972700011515
.

Files

Files Size Format View
CzechMathJ_63-2013-2_14.pdf 293.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo