Previous |  Up |  Next

Article

Title: The efficiency of approximating real numbers by Lüroth expansion (English)
Author: Cao, Chunyun
Author: Wu, Jun
Author: Zhang, Zhenliang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 2
Year: 2013
Pages: 497-513
Summary lang: English
.
Category: math
.
Summary: For any $x\in (0,1]$, let $$ x=\frac {1}{d_1}+\frac {1}{d_1(d_1-1)d_2}+\dots +\frac {1}{d_1(d_1-1) \dots d_{n-1}(d_{n-1}-1)d_{n}}+\dots $$ be its Lüroth expansion. Denote by ${P_n(x)}/{Q_n(x)}$ the partial sum of the first $n$ terms in the above series and call it the $n$th convergent of $x$ in the Lüroth expansion. This paper is concerned with the efficiency of approximating real numbers by their convergents $\{{P_n(x)}/{Q_n(x)}\}_{n\ge 1}$ in the Lüroth expansion. It is shown that almost no points can have convergents as the optimal approximation for infinitely many times in the Lüroth expansion. Consequently, Hausdorff dimension is introduced to quantify the set of real numbers which can be well approximated by their convergents in the Lüroth expansion, namely the following Jarník-like set: $\{x\in (0,1]\colon |x-{P_n(x)}/{Q_n(x)}|<{1}/{Q_n(x)^{\nu +1}} \text{infinitely often}\}$ for any $\nu \ge 1$. (English)
Keyword: Lüroth expansion
Keyword: optimal approximation
Keyword: Hausdorff dimension
MSC: 11K55
MSC: 28A80
idZBL: Zbl 06236427
idMR: MR3073974
DOI: 10.1007/s10587-013-0033-1
.
Date available: 2013-07-18T15:05:33Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143328
.
Reference: [1] Barreira, L., Iommi, G.: Frequency of digits in the Lüroth expansion.J. Number Theory 129 (2009), 1479-1490. Zbl 1188.37024, MR 2521488, 10.1016/j.jnt.2008.06.002
Reference: [2] Barrionuevo, J., Burton, R. M., Dajani, K., Kraaikamp, C.: Ergodic properties of generalized Lüroth series.Acta Arith. 74 (1996), 311-327. Zbl 0848.11039, MR 1378226, 10.4064/aa-74-4-311-327
Reference: [3] Dajani, K., Kraaikamp, C.: Ergodic Theory of Numbers. The Carus Mathematical Monographs 29.The Mathematical Association of America Washington DC (2002). MR 1917322
Reference: [4] Dajani, K., Kraaikamp, C.: On approximation by Lüroth series.J. Théor. Nombres Bordx. 8 (1996), 331-346. Zbl 0870.11039, MR 1438473, 10.5802/jtnb.172
Reference: [5] Falconer, K.: Techniques in Fractal Geometry.John Wiley & Sons Chichester (1997). Zbl 0869.28003, MR 1449135
Reference: [6] Fan, A., Liao, L., Ma, J., Wang, B.: Dimension of Besicovitch-Eggleston sets in countable symbolic space.Nonlinearity 23 (2010), 1185-1197. MR 2630097, 10.1088/0951-7715/23/5/009
Reference: [7] Galambos, J.: Representations of Real Numbers by Infnite Series. Lecture Notes in Mathematics 502.Springer Berlin (1976). MR 0568141
Reference: [8] Jager, H., Vroedt, C. de: Lüroth series and their ergodic properties.Nederl. Akad. Wet., Proc., Ser. A 72 (1969), 31-42. Zbl 0167.32201, MR 0238793
Reference: [9] Kesseböhmer, M., Munday, S., Stratmann, B. O.: Strong renewal theorems and Lyapunov spectra for $\alpha$-Farey and $\alpha$-Lüroth systems.Ergodic Theory Dyn. Syst. 32 (2012), 989-1017. Zbl 1263.37013, MR 2995653
Reference: [10] Khintchine, A. Y.: Continued Fractions. Translated by Peter Wynn.P. Noordhoff Groningen (1963). Zbl 0117.28503, MR 0161834
Reference: [11] Lüroth, J.: On a single valued development of numbers in an infinite series.Klein Ann. 21 (1882), 411-424 German.
Reference: [12] Šalát, T.: Zur metrischen Theorie der Lürothschen Entwicklungen der reellen Zahlen.Czech. Math. J. 18 (1968), 489-522 German. MR 0229605
Reference: [13] Shen, L., Fang, K.: The fractional dimensional theory in Lüroth expansion.Czech. Math. J. 61 (2011), 795-807. Zbl 1249.11084, MR 2853093, 10.1007/s10587-011-0028-8
Reference: [14] Shen, L., Wu, J.: On the error-sum function of Lüroth series.J. Math. Anal. Appl. 329 (2007), 1440-1445. Zbl 1154.11331, MR 2296934, 10.1016/j.jmaa.2006.07.049
Reference: [15] Wang, B., Wu, J.: Hausdorff dimension of certain sets arising in continued fraction expansions.Adv. Math. 218 (2008), 1319-1339. MR 2419924, 10.1016/j.aim.2008.03.006
Reference: [16] Wang, S., Xu, J.: On the Lebesgue measure of sum-level sets for Lüroth expansion.J. Math. Anal. Appl. 374 (2011), 197-200. Zbl 1204.11130, MR 2726198, 10.1016/j.jmaa.2010.08.047
.

Files

Files Size Format View
CzechMathJ_63-2013-2_15.pdf 296.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo