Previous |  Up |  Next

Article

Keywords:
Lüroth expansion; optimal approximation; Hausdorff dimension
Summary:
For any $x\in (0,1]$, let $$ x=\frac {1}{d_1}+\frac {1}{d_1(d_1-1)d_2}+\dots +\frac {1}{d_1(d_1-1) \dots d_{n-1}(d_{n-1}-1)d_{n}}+\dots $$ be its Lüroth expansion. Denote by ${P_n(x)}/{Q_n(x)}$ the partial sum of the first $n$ terms in the above series and call it the $n$th convergent of $x$ in the Lüroth expansion. This paper is concerned with the efficiency of approximating real numbers by their convergents $\{{P_n(x)}/{Q_n(x)}\}_{n\ge 1}$ in the Lüroth expansion. It is shown that almost no points can have convergents as the optimal approximation for infinitely many times in the Lüroth expansion. Consequently, Hausdorff dimension is introduced to quantify the set of real numbers which can be well approximated by their convergents in the Lüroth expansion, namely the following Jarník-like set: $\{x\in (0,1]\colon |x-{P_n(x)}/{Q_n(x)}|<{1}/{Q_n(x)^{\nu +1}} \text{infinitely often}\}$ for any $\nu \ge 1$.
References:
[1] Barreira, L., Iommi, G.: Frequency of digits in the Lüroth expansion. J. Number Theory 129 (2009), 1479-1490. DOI 10.1016/j.jnt.2008.06.002 | MR 2521488 | Zbl 1188.37024
[2] Barrionuevo, J., Burton, R. M., Dajani, K., Kraaikamp, C.: Ergodic properties of generalized Lüroth series. Acta Arith. 74 (1996), 311-327. MR 1378226 | Zbl 0848.11039
[3] Dajani, K., Kraaikamp, C.: Ergodic Theory of Numbers. The Carus Mathematical Monographs 29. The Mathematical Association of America Washington DC (2002). MR 1917322
[4] Dajani, K., Kraaikamp, C.: On approximation by Lüroth series. J. Théor. Nombres Bordx. 8 (1996), 331-346. DOI 10.5802/jtnb.172 | MR 1438473 | Zbl 0870.11039
[5] Falconer, K.: Techniques in Fractal Geometry. John Wiley & Sons Chichester (1997). MR 1449135 | Zbl 0869.28003
[6] Fan, A., Liao, L., Ma, J., Wang, B.: Dimension of Besicovitch-Eggleston sets in countable symbolic space. Nonlinearity 23 (2010), 1185-1197. DOI 10.1088/0951-7715/23/5/009 | MR 2630097
[7] Galambos, J.: Representations of Real Numbers by Infnite Series. Lecture Notes in Mathematics 502. Springer Berlin (1976). MR 0568141
[8] Jager, H., Vroedt, C. de: Lüroth series and their ergodic properties. Nederl. Akad. Wet., Proc., Ser. A 72 (1969), 31-42. MR 0238793 | Zbl 0167.32201
[9] Kesseböhmer, M., Munday, S., Stratmann, B. O.: Strong renewal theorems and Lyapunov spectra for $\alpha$-Farey and $\alpha$-Lüroth systems. Ergodic Theory Dyn. Syst. 32 (2012), 989-1017. MR 2995653 | Zbl 1263.37013
[10] Khintchine, A. Y.: Continued Fractions. Translated by Peter Wynn. P. Noordhoff Groningen (1963). MR 0161834 | Zbl 0117.28503
[11] Lüroth, J.: On a single valued development of numbers in an infinite series. Klein Ann. 21 (1882), 411-424 German.
[12] Šalát, T.: Zur metrischen Theorie der Lürothschen Entwicklungen der reellen Zahlen. Czech. Math. J. 18 (1968), 489-522 German. MR 0229605
[13] Shen, L., Fang, K.: The fractional dimensional theory in Lüroth expansion. Czech. Math. J. 61 (2011), 795-807. DOI 10.1007/s10587-011-0028-8 | MR 2853093 | Zbl 1249.11084
[14] Shen, L., Wu, J.: On the error-sum function of Lüroth series. J. Math. Anal. Appl. 329 (2007), 1440-1445. DOI 10.1016/j.jmaa.2006.07.049 | MR 2296934 | Zbl 1154.11331
[15] Wang, B., Wu, J.: Hausdorff dimension of certain sets arising in continued fraction expansions. Adv. Math. 218 (2008), 1319-1339. DOI 10.1016/j.aim.2008.03.006 | MR 2419924
[16] Wang, S., Xu, J.: On the Lebesgue measure of sum-level sets for Lüroth expansion. J. Math. Anal. Appl. 374 (2011), 197-200. DOI 10.1016/j.jmaa.2010.08.047 | MR 2726198 | Zbl 1204.11130
Partner of
EuDML logo