| Title: | On generalized $f$-harmonic morphisms (English) | 
| Author: | Cherif, A. Mohammed | 
| Author: | Mustapha, Djaa | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 55 | 
| Issue: | 1 | 
| Year: | 2014 | 
| Pages: | 17-27 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | In this paper, we study the 
characterization of generalized 
$f$-harmonic morphisms between Riemannian 
manifolds. We prove that a map between 
Riemannian manifolds is an 
$f$-harmonic morphism if and only if it 
is a horizontally weakly conformal map 
satisfying some further conditions. 
We present new properties generalizing 
Fuglede-Ishihara characterization for 
harmonic morphisms ([Fuglede B., 
Harmonic morphisms between Riemannian 
manifolds, Ann. Inst. Fourier (Grenoble) 
28 (1978), 107--144], [Ishihara T., 
A mapping of Riemannian manifolds which 
preserves harmonic functions, 
J. Math. Kyoto Univ. 19 (1979), 
no. 2, 215--229]). (English) | 
| Keyword: | $f$-harmonic morphisms | 
| Keyword: | $f$-harmonic maps | 
| Keyword: | horizontally weakly conformal map | 
| MSC: | 53C43 | 
| MSC: | 58E20 | 
| idZBL: | Zbl 06383782 | 
| idMR: | MR3160823 | 
| . | 
| Date available: | 2014-01-17T09:32:05Z | 
| Last updated: | 2016-04-04 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/143565 | 
| . | 
| Reference: | [1] Ara M.: Geometry of $F$-harmonic maps.Kodai Math. J. 22 (1999), no. 2, 243–263. Zbl 0941.58010, MR 1700595, 10.2996/kmj/1138044045 | 
| Reference: | [2] Baird P., Wood J.C.: Harmonic Morphisms between Riemannain Manifolds.Clarendon Press, Oxford, 2003. MR 2044031 | 
| Reference: | [3] Course N.: f-harmonic maps which map the boundary of the domain to one point in the target.New York J. Math. 13 (2007), 423–435 (electronic). Zbl 1202.58012, MR 2357720 | 
| Reference: | [4] Djaa M., Cherif A.M., Zegga K., Ouakkas S.: On the generalized of harmonic and bi-harmonic maps.Int. Electron. J. Geom. 5 (2012), no. 1, 90–100. MR 2915490 | 
| Reference: | [5] Mustapha D., Cherif A.M.: On the generalized $f$-biharmonic maps and stress $f$-bienergy tensor.Journal of Geometry and Symmetry in Physics, JGSP 29 (2013), 65–81. MR 3113559 | 
| Reference: | [6] Fuglede B.: Harmonic morphisms between Riemannian manifolds.Ann. Inst. Fourier (Grenoble) 28 (1978), 107–144. Zbl 0408.31011, MR 0499588, 10.5802/aif.691 | 
| Reference: | [7] Gudmundsson S.: The geometry of harmonic morphisms.University of Leeds, Department of Pure Mathematics, April 1992. Zbl 0715.53029 | 
| Reference: | [8] Ishihara T.: A mapping of Riemannian manifolds which preserves harmonic functions.J. Math. Kyoto Univ. 19 (1979), no. 2, 215–229. Zbl 0421.31006, MR 0545705 | 
| Reference: | [9] Lichnerowicz A.: Applications harmoniques et variétés Kähleriennes.1968/1969 Symposia Mathematica, Vol. III (INDAM, Rome, 1968/69), pp. 341–402, Academic Press, London. Zbl 0193.50101, MR 0262993 | 
| Reference: | [10] Ou Y.L.: On $f$-harmonic morphisms between Riemannian manifolds.arxiv:1103.5687, Chinese Ann. Math., series B(to appear). | 
| Reference: | [11] Ouakkas S., Nasri R., Djaa M.: On the f-harmonic and f-biharmonic maps.JP J. Geom. Topol. 10 (2010), no. 1, 11–27. Zbl 1209.58014, MR 2677559 | 
| . |