Previous |  Up |  Next

Article

Title: On generalized $f$-harmonic morphisms (English)
Author: Cherif, A. Mohammed
Author: Mustapha, Djaa
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 1
Year: 2014
Pages: 17-27
Summary lang: English
.
Category: math
.
Summary: In this paper, we study the characterization of generalized $f$-harmonic morphisms between Riemannian manifolds. We prove that a map between Riemannian manifolds is an $f$-harmonic morphism if and only if it is a horizontally weakly conformal map satisfying some further conditions. We present new properties generalizing Fuglede-Ishihara characterization for harmonic morphisms ([Fuglede B., Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier (Grenoble) 28 (1978), 107--144], [Ishihara T., A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ. 19 (1979), no. 2, 215--229]). (English)
Keyword: $f$-harmonic morphisms
Keyword: $f$-harmonic maps
Keyword: horizontally weakly conformal map
MSC: 53C43
MSC: 58E20
idZBL: Zbl 06383782
idMR: MR3160823
.
Date available: 2014-01-17T09:32:05Z
Last updated: 2016-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/143565
.
Reference: [1] Ara M.: Geometry of $F$-harmonic maps.Kodai Math. J. 22 (1999), no. 2, 243–263. Zbl 0941.58010, MR 1700595, 10.2996/kmj/1138044045
Reference: [2] Baird P., Wood J.C.: Harmonic Morphisms between Riemannain Manifolds.Clarendon Press, Oxford, 2003. MR 2044031
Reference: [3] Course N.: f-harmonic maps which map the boundary of the domain to one point in the target.New York J. Math. 13 (2007), 423–435 (electronic). Zbl 1202.58012, MR 2357720
Reference: [4] Djaa M., Cherif A.M., Zegga K., Ouakkas S.: On the generalized of harmonic and bi-harmonic maps.Int. Electron. J. Geom. 5 (2012), no. 1, 90–100. MR 2915490
Reference: [5] Mustapha D., Cherif A.M.: On the generalized $f$-biharmonic maps and stress $f$-bienergy tensor.Journal of Geometry and Symmetry in Physics, JGSP 29 (2013), 65–81. MR 3113559
Reference: [6] Fuglede B.: Harmonic morphisms between Riemannian manifolds.Ann. Inst. Fourier (Grenoble) 28 (1978), 107–144. Zbl 0408.31011, MR 0499588, 10.5802/aif.691
Reference: [7] Gudmundsson S.: The geometry of harmonic morphisms.University of Leeds, Department of Pure Mathematics, April 1992. Zbl 0715.53029
Reference: [8] Ishihara T.: A mapping of Riemannian manifolds which preserves harmonic functions.J. Math. Kyoto Univ. 19 (1979), no. 2, 215–229. Zbl 0421.31006, MR 0545705
Reference: [9] Lichnerowicz A.: Applications harmoniques et variétés Kähleriennes.1968/1969 Symposia Mathematica, Vol. III (INDAM, Rome, 1968/69), pp. 341–402, Academic Press, London. Zbl 0193.50101, MR 0262993
Reference: [10] Ou Y.L.: On $f$-harmonic morphisms between Riemannian manifolds.arxiv:1103.5687, Chinese Ann. Math., series B(to appear).
Reference: [11] Ouakkas S., Nasri R., Djaa M.: On the f-harmonic and f-biharmonic maps.JP J. Geom. Topol. 10 (2010), no. 1, 11–27. Zbl 1209.58014, MR 2677559
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-1_3.pdf 232.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo