Previous |  Up |  Next

Article

Title: A note on almost sure convergence and convergence in measure (English)
Author: Kříž, P.
Author: Štěpán, J.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 1
Year: 2014
Pages: 29-40
Summary lang: English
.
Category: math
.
Summary: The present article studies the conditions under which the almost everywhere convergence and the convergence in measure coincide. An application in the statistical estimation theory is outlined as well. (English)
Keyword: convergence in measure
Keyword: almost sure convergence
Keyword: pointwise compactness
Keyword: Lusin property
Keyword: strongly consistent estimators
MSC: 28A20
MSC: 60B05
MSC: 60F05
MSC: 60F15
MSC: 62C10
MSC: 62F12
idZBL: Zbl 06383783
idMR: MR3160824
.
Date available: 2014-01-17T09:32:45Z
Last updated: 2016-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/143566
.
Reference: [1] Asanov M.O., Veličko N.V.: Kompaktnye množestva v $C_p(X)$.Comment. Math. Univ. Carolinae 22 (1981), 255–266.
Reference: [2] Blackwell D.: There are no Borel SPLIFs.Ann. Probability 8 (1980), 1189–1190. Zbl 0451.28001, MR 0602393, 10.1214/aop/1176994581
Reference: [3] Dunford N., Schwartz J.T.: Linear Operators Part I: General Theory.John Wiley & Sons, Inc., New Jersey, 1988. Zbl 0635.47001, MR 1009162
Reference: [4] Fremlin D.H.: Measure Theory, Vol 4, Topological Measure Spaces.Colchester: Torres Fremlin, 2003. Zbl 1166.28001, MR 2462372
Reference: [5] Ionescu Tulcea A.: On pointwise convergence, compactness and equicontinuity I.Z. Wahrscheinlichkeitstheorie und verw. Gebiete 26 (1973), 197–205. MR 0405102, 10.1007/BF00532722
Reference: [6] Ionescu Tulcea A.: On pointwise convergence, compactness and equicontinuity II.Advances in Math. 12 (1974), 171–177. Zbl 0301.46032, MR 0405103, 10.1016/S0001-8708(74)80002-2
Reference: [7] Kelley J.L.: General Topology.Springer, New York, 1975. Zbl 0518.54001, MR 0370454
Reference: [8] Kříž P.: How to construct Borel measurable PLIFs?.WDS'11 Proc. of Contr. Papers, Part I, (2011), 43–48.
Reference: [9] Štěpán J.: The probability limit identification function exists under the continuum hypothesis.Ann. Probability 1 (1973), 712–715. Zbl 0263.60013, MR 0356196, 10.1214/aop/1176996899
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-1_4.pdf 257.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo