Previous |  Up |  Next

Article

Title: On extensions of bounded subgroups in Abelian groups (English)
Author: Gabriyelyan, S. S.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 2
Year: 2014
Pages: 175-188
Summary lang: English
.
Category: math
.
Summary: It is well-known that every bounded Abelian group is a direct sum of finite cyclic subgroups. We characterize those non-trivial bounded subgroups $H$ of an infinite Abelian group $G$, for which there is an infinite subgroup $G_0$ of $G$ containing $H$ such that $G_0$ has a special decomposition into a direct sum which takes into account the properties of $G$, and which induces a natural decomposition of $H$ into a direct sum of finite subgroups. (English)
Keyword: Abelian group
Keyword: bounded group
Keyword: simple extension
MSC: 20K21
MSC: 20K27
idZBL: Zbl 06391535
idMR: MR3193923
.
Date available: 2014-06-07T15:32:15Z
Last updated: 2016-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/143799
.
Reference: [1] Fuchs L.: Abelian Groups.Budapest: Publishing House of the Hungarian Academy of Sciences 1958, Pergamon Press, London, third edition, reprinted 1967. Zbl 1265.06054, MR 0106942
Reference: [2] Gabriyelyan S.S.: Finitely generated subgroups as a von Neumann radical of an Abelian group.Mat. Stud. 38 (2012), 124–138. MR 3057998
Reference: [3] Gabriyelyan S.S.: Bounded subgroups as a von Neumann radical of an Abelian group.preprint.
Reference: [4] Markov A.A.: On free topological groups.Izv. Akad. Nauk SSSR Ser. Mat. 9 (1945), 3–64 (in Russian); English transl. in: Amer. Math. Soc. Transl. (1) 8 (1962), 195–272. MR 0012301
Reference: [5] Markov A.A.: On the existence of periodic connected topological groups.Izv. Akad. Nauk SSSR Ser. Mat. 8 (1944), 225–232 (in Russian); English transl. in: Amer. Math. Soc. Transl. (1) 8 (1962), 186–194. MR 0012300
Reference: [6] Nienhuys J.W.: Constructions of group topologies on abelian groups.Fund. Math. 75 (1972), 101–116. MR 0302810
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-2_4.pdf 256.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo