Previous |  Up |  Next

Article

Title: Semicontinuous integrands as jointly measurable maps (English)
Author: Carbonell-Nicolau, Oriol
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 2
Year: 2014
Pages: 189-193
Summary lang: English
.
Category: math
.
Summary: Suppose that $(X,\mathcal A)$ is a measurable space and $Y$ is a metrizable, Souslin space. Let $\mathcal A^u$ denote the universal completion of $\mathcal A$. For $x\in X$, let $\underline f(x,\cdot)$ be the lower semicontinuous hull of $f(x,\cdot)$. If $f:X\times Y\rightarrow\overline{\mathbb R}$ is $(\mathcal A^u\otimes\mathcal B(Y),\mathcal B(\overline{\mathbb R}))$-measurable, then $\underline f$ is $(\mathcal A^u\otimes\mathcal B(Y),\mathcal B(\overline{\mathbb R}))$-measurable. (English)
Keyword: lower semicontinuous hull
Keyword: jointly measurable function
Keyword: measurable projection theorem
Keyword: normal integrand
MSC: 28A20
MSC: 54C30
idZBL: Zbl 06391536
idMR: MR3193924
.
Date available: 2014-06-07T15:32:58Z
Last updated: 2016-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/143800
.
Reference: [1] Balder E.J.: A general approach to lower semicontinuity and lower closure in optimal control theory.SIAM J. Control Optim. 22 (1984), 570–598. Zbl 0549.49005, MR 0747970, 10.1137/0322035
Reference: [2] Balder E.J.: Generalized equilibrium results for games with incomplete information.Math. Oper. Res. 13 (1988), 265–276. Zbl 0658.90104, MR 0942618, 10.1287/moor.13.2.265
Reference: [3] Balder E.J.: On ws-convergence of product measures.Math. Oper. Res. 26 (2001), 494–518. Zbl 1073.60500, MR 1849882, 10.1287/moor.26.3.494.10581
Reference: [4] Carbonell-Nicolau O., McLean R.P.: On the existence of Nash equilibrium in Bayesian games.mimeograph, 2013.
Reference: [5] Cohn D.L.: Measure Theory.Second edition, Birkhäuser/Springer, New York, 2013. Zbl 0860.28001, MR 3098996
Reference: [6] Sainte-Beuve M.-F.: On the extension of von Neumann-Aumann's theorem.J. Functional Analysis 17 (1974), 112–129. Zbl 0286.28005, MR 0374364, 10.1016/0022-1236(74)90008-1
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-2_5.pdf 194.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo