Previous |  Up |  Next

Article

Title: Remarks on Fréchet differentiability of pointwise Lipschitz, cone-monotone and quasiconvex functions (English)
Author: Zajíček, Luděk
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 2
Year: 2014
Pages: 203-213
Summary lang: English
.
Category: math
.
Summary: We present some consequences of a deep result of J. Lindenstrauss and D. Preiss on $\Gamma$-almost everywhere Fréchet differentiability of Lipschitz functions on $c_0$ (and similar Banach spaces). For example, in these spaces, every continuous real function is Fréchet differentiable at $\Gamma$-almost every $x$ at which it is Gâteaux differentiable. Another interesting consequences say that both cone-monotone functions and continuous quasiconvex functions on these spaces are $\Gamma$-almost everywhere Fréchet differentiable. In the proofs we use a general observation that each version of the Rademacher theorem for real functions on Banach spaces (i.e., a result on a.e. Fréchet or Gâteaux differentiability of Lipschitz functions) easily implies by a method of J. Malý a corresponding version of the Stepanov theorem (on a.e. differentiability of pointwise Lipschitz functions). Using the method of separable reduction, we extend some results to several non-separable spaces. (English)
Keyword: cone-monotone function
Keyword: Fréchet differentiability
Keyword: Gâteaux differentiability
Keyword: pointwise Lipschitz function
Keyword: $\Gamma$-null set
Keyword: quasiconvex function
Keyword: separable reduction
MSC: 46G05
MSC: 47H07
MSC: 49J50
MSC: 58C20
idZBL: Zbl 06391538
idMR: MR3193926
.
Date available: 2014-06-07T15:36:09Z
Last updated: 2016-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/143802
.
Reference: [1] Benyamini Y., Lindenstrauss J.: Geometric Nonlinear Functional Analysis, Vol. 1.Colloquium Publications, 48, American Mathematical Society, Providence, 2000. MR 1727673
Reference: [2] Bongiorno D.: Stepanoff's theorem in separable Banach spaces.Comment. Math. Univ. Carolin. 39 (1998), 323–335. Zbl 0937.46038, MR 1651959
Reference: [3] Bongiorno D.: Radon-Nikodým property of the range of Lipschitz extensions.Atti Sem. Mat. Fis. Univ. Modena 48 (2000), 517–525. MR 1811552
Reference: [4] Borwein J.M., Wang X.: Cone monotone functions, differentiability and continuity.Canad. J. Math. 57 (2005), 961–982. Zbl 1095.49015, MR 2164591, 10.4153/CJM-2005-037-5
Reference: [5] Conway J.B.: A course in functional analysis.2nd ed., Graduate Texts in Mathematics, 96, Springer, New York, 1990. Zbl 0706.46003, MR 1070713
Reference: [6] Crouzeix J.-P.: Continuity and differentiability of quasiconvex functions.Handbook of generalized convexity and generalized monotonicity, pp. 121–149, Nonconvex Optim. Appl. 76, Springer, New York, 2005. Zbl 1077.49015, MR 2098899, 10.1007/0-387-23393-8_3
Reference: [7] Cúth M.: Separable reduction theorems by the method of elementary submodels.Fund. Math. 219 (2012), 191–222. Zbl 1270.46015, MR 3001239, 10.4064/fm219-3-1
Reference: [8] Duda J.: Metric and $w^*$-differentiability of pointwise Lipschitz mappings.Z. Anal. Anwend. 26 (2007), 341–362. Zbl 1143.26006, MR 2322838, 10.4171/ZAA/1328
Reference: [9] Duda J.: On Gâteaux differentiability of pointwise Lipschitz mappings.Canad. Math. Bull. 51 (2008), 205–216. Zbl 1152.46030, MR 2414208, 10.4153/CMB-2008-022-6
Reference: [10] Duda J.: Cone monotone mappings: continuity and differentiability.Nonlinear Anal. 68 (2008), 1963–1972. Zbl 1135.46046, MR 2388756, 10.1016/j.na.2007.01.023
Reference: [11] Engelking R.: General Topology.2nd ed., Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [12] Fabian M., Habala P., Hájek P., Montesinos Santalucía V., Pelant J., Zizler V.: Functional analysis and infinite-dimensional geometry.CMS Books in Mathematics, 8, Springer, New York, 2001. Zbl 0981.46001, MR 1831176
Reference: [13] Górak R.: A note on differentiability of Lipschitz maps.Bull. Pol. Acad. Sci. Math. 58 (2010), 259–268. Zbl 1214.46025, MR 2771575, 10.4064/ba58-3-8
Reference: [14] Lindenstrauss J., Preiss D.: On Fréchet differentiability of Lipschitz maps between Banach spaces.Ann. of Math. 157 (2003), 257–288. Zbl 1171.46313, MR 1954267, 10.4007/annals.2003.157.257
Reference: [15] Lindenstrauss J., Preiss D., Tišer J.: Fréchet Differentiability of Lipschitz Maps and Porous Sets in Banach Spaces.Princeton University Press, Princeton, 2012. Zbl 1139.46036, MR 2884141
Reference: [16] Malý J.: A simple proof of the Stepanov theorem on differentiability almost everywhere.Exposition. Math. 17 (1999), 59–61. Zbl 0930.26005, MR 1687460
Reference: [17] Malý J., Zajíček L.: On Stepanov type differentiability theorems.submitted.
Reference: [18] McShane E.J.: Extension of range of functions.Bull. Amer. Math. Soc. 40 (1934), 837–842. Zbl 0010.34606, MR 1562984, 10.1090/S0002-9904-1934-05978-0
Reference: [19] Preiss D.: Differentiability of Lipschitz functions on Banach spaces.J. Funct. Anal. 91 (1990), 312–345. Zbl 0872.46026, MR 1058975, 10.1016/0022-1236(90)90147-D
Reference: [20] Preiss D., Zajíček L.: Fréchet differentiation of convex functions in a Banach space with a separable dual.Proc. Amer. Math. Soc. 91 (1984), 202–204. Zbl 0521.46034, MR 0740171
Reference: [21] Preiss D., Zajíček L.: Directional derivatives of Lipschitz functions.Israel J. Math. 125 (2001), 1–27. MR 1853802, 10.1007/BF02773371
Reference: [22] Rabier P.J.: Differentiability of quasiconvex functions on separable Banach spaces.preprint, 2013, arXiv:1301.2852v2. MR 3136598
Reference: [23] Zajíček L.: Fréchet differentiability, strict differentiability and subdifferentiability.Czechoslovak Math. J. 41 (1991), 471–489. Zbl 0760.46038, MR 1117801
Reference: [24] Zajíček L.: On $\sigma$-porous sets in abstract spaces.Abstr. Appl. Anal. 2005 (2005), 509–534. Zbl 1098.28003, MR 2201041, 10.1155/AAA.2005.509
Reference: [25] Zajíček L.: On sets of non-differentiability of Lipschitz and convex functions.Math. Bohem. 132 (2007), 75–85. Zbl 1171.46314, MR 2311755
Reference: [26] Zajíček L.: Hadamard differentiability via Gâteaux differentiability.Proc. Amer. Math. Soc.(to appear).
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-2_7.pdf 250.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo