Previous |  Up |  Next

Article

Title: Existence of periodic solutions for first-order totally nonlinear neutral differential equations with variable delay (English)
Author: Ardjouni, Abdelouaheb
Author: Djoudi, Ahcène
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 2
Year: 2014
Pages: 215-225
Summary lang: English
.
Category: math
.
Summary: We use a modification of Krasnoselskii's fixed point theorem due to Burton (see [Liapunov functionals, fixed points and stability by Krasnoselskii's theorem, Nonlinear Stud. 9 (2002), 181--190], Theorem 3) to show that the totally nonlinear neutral differential equation with variable delay \begin{equation*} x'(t) = -a(t)h (x(t)) + c(t)x'(t-g(t))Q' (x(t-g(t))) + G (t,x(t),x(t-g(t))), \end{equation*} has a periodic solution. We invert this equation to construct a fixed point mapping expressed as a sum of two mappings such that one is compact and the other is a large contraction. We show that the mapping fits very nicely for applying the modification of Krasnoselskii's theorem so that periodic solutions exist. (English)
Keyword: periodic solution
Keyword: nonlinear neutral differential equation
Keyword: large contraction
Keyword: integral equation
MSC: 34K13
MSC: 34K20
MSC: 34K40
MSC: 45D05
MSC: 45J05
idZBL: Zbl 06391539
idMR: MR3193927
.
Date available: 2014-06-07T15:37:59Z
Last updated: 2016-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/143803
.
Reference: [1] Adivar M., Islam M.N., Raffoul Y.N.: Separate contraction and existence of periodic solutions in totally nonlinear delay differential equations.Hacet. J. Math. Stat. 41 (2012), no. 1, 1–13. Zbl 1260.34132, MR 2976906
Reference: [2] Ardjouni A., Djoudi A.: Existence of periodic solutions for totally nonlinear neutral differential equations with variable delay.Sarajevo J. Math. 8 (20) (2012), 107–117. Zbl 1260.34134, MR 2977530
Reference: [3] Ardjouni A., Djoudi A.: Existence of periodic solutions for nonlinear neutral dynamic equations with variable delay on a time scale.Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 3061–3069. Zbl 1254.34128, MR 2880475, 10.1016/j.cnsns.2011.11.026
Reference: [4] Ardjouni A., Djoudi A.: Periodic solutions in totally nonlinear difference equations with functional delay.Stud. Univ. Babeş-Bolyai Math. 56 (2011), no. 3, 7–17. Zbl 1274.39029, MR 2869710
Reference: [5] Ardjouni A., Djoudi A.: Periodic solutions for a second-order nonlinear neutral differential equation with variable delay.Electron. J. Differential Equations 2011, no. 128, 1–7. Zbl 1278.34077, MR 2853014
Reference: [6] Ardjouni A., Djoudi A.: Periodic solutions in totally nonlinear dynamic equations with functional delay on a time scale.Rend. Semin. Mat. Univ. Politec. Torino 68 (2010), no. 4, 349–359. Zbl 1226.34062, MR 2815207
Reference: [7] Burton T.A.: Liapunov functionals, fixed points and stability by Krasnoselskii's theorem.Nonlinear Stud. 9 (2002), 181–190. Zbl 1084.47522, MR 1898587
Reference: [8] Burton T.A.: A fixed point theorem of Krasnoselskii.Appl. Math. Lett. 11 (1998), 85–88. Zbl 1127.47318, MR 1490385, 10.1016/S0893-9659(97)00138-9
Reference: [9] Burton T.A.: Integral equations, implicit relations and fixed points.Proc. Amer. Math. Soc. 124 (1996), 2383–2390. MR 1346965, 10.1090/S0002-9939-96-03533-2
Reference: [10] Burton T.A.: Stability and Periodic Solutions of Ordinary Functional Differential Equations.Academic Press, Orlando, FL, 1985. MR 0837654
Reference: [11] Derrardjia I., Ardjouni A., Djoudi A.: Stability by Krasnoselskii's theorem in totally nonlinear neutral differential equations.Opuscula Math. 33 (2013), no. 2, 255–272. MR 3023531, 10.7494/OpMath.2013.33.2.255
Reference: [12] Deham H., Djoudi A.: Existence of periodic solutions for neutral nonlinear differential equations with variable delay.Electron. J. Differential Equations 2010, no. 127, 1–8. Zbl 1203.34110, MR 2685037
Reference: [13] Dib Y.M., Maroun M.R., Raffoul Y.N.: Periodicity and stability in neutral nonlinear differential equations with functional delay.Electron. J. Differential Equations 2005, no. 142, 1–11. Zbl 1097.34049, MR 2181286
Reference: [14] Kang S., Zhang G.: Existence of nontrivial periodic solutions for first order functional differential equations.Appl. Math. Lett. 18 (2005), 101–107. Zbl 1075.34064, MR 2121560, 10.1016/j.aml.2004.07.018
Reference: [15] Kun L.Y.: Periodic solution of a periodic neutral delay equation.J. Math. Anal. Appl. 214 (1997), 11–21. Zbl 0894.34075, MR 1645495, 10.1006/jmaa.1997.5576
Reference: [16] Raffoul Y.N.: Periodic solutions for neutral nonlinear differential equations with functional delays.Electron. J. Differential Equations 2003, no. 102, 1–7. MR 2011575
Reference: [17] Smart D.R.: Fixed Points Theorems.Cambridge University Press, Cambridge, 1980.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-2_8.pdf 236.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo