Previous |  Up |  Next

Article

Title: The fixed point property in a Banach space isomorphic to $c_0$ (English)
Author: Poulios, Costas
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 2
Year: 2014
Pages: 195-202
Summary lang: English
.
Category: math
.
Summary: We consider a Banach space, which comes naturally from $c_0$ and it appears in the literature, and we prove that this space has the fixed point property for non-expansive mappings defined on weakly compact, convex sets. (English)
Keyword: non-expansive mappings
Keyword: fixed point property
Keyword: Banach spaces isomorphic to $c_0$
MSC: 46B25
MSC: 47H09
MSC: 47H10
idZBL: Zbl 06391537
idMR: MR3193925
.
Date available: 2014-06-07T15:33:53Z
Last updated: 2016-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/143801
.
Reference: [1] Alspach D.: A fixed point free nonexpansive map.Proc. Amer. Math. Soc. 82 (1981), 423–424. Zbl 0468.47036, MR 0612733, 10.1090/S0002-9939-1981-0612733-0
Reference: [2] Argyros S.A., Deliyanni I., Tolias A.G.: Hereditarily indecomposable Banach Algebras of diagonal operators.Israel J. Math. 181 (2011), 65–110. Zbl 1219.46013, MR 2773038, 10.1007/s11856-011-0004-x
Reference: [3] Browder F.E.: Nonexpansive nonlinear operators in Banach spaces.Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041–1044. MR 0187120, 10.1073/pnas.54.4.1041
Reference: [4] Elton J., Lin P., Odell E., Szarek S.: Remarks on the fixed point problem for nonexpansive maps.Contemporary Math. 18 (1983), 87–119. Zbl 0528.47040, MR 0728595, 10.1090/conm/018/728595
Reference: [5] Hagler J.: A counterexample to several questions about Banach spaces.Studia Math. 60 (1977), 289–308. Zbl 0387.46015, MR 0442651
Reference: [6] Karlovitz L.A.: Existence of fixed points for nonexpansive mappings in a space without normal structure.Pacific J. Math. 66 (1976), 153–159. MR 0435951, 10.2140/pjm.1976.66.153
Reference: [7] Kirk W.A.: A fixed point theorem for mappings which do not increase distances.Amer. Math. Monthly 72 (1965), 1004–1006. Zbl 0141.32402, MR 0189009, 10.2307/2313345
Reference: [8] Maurey B.: Points fixes des contractions sur un convexe forme de $L^1$.Seminaire d' Analyse Fonctionelle 80–81, Ecole Polytechnique, Palaiseau, 1981. MR 0659309
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-2_6.pdf 222.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo