Previous |  Up |  Next

Article

Title: Homoclinic orbits in a two-patch predator-prey model with Preisach hysteresis operator (English)
Author: Pimenov, Alexander
Author: Rachinskii, Dmitrii
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 139
Issue: 2
Year: 2014
Pages: 285-298
Summary lang: English
.
Category: math
.
Summary: Systems of operator-differential equations with hysteresis operators can have unstable equilibrium points with an open basin of attraction. Such equilibria can have homoclinic orbits attached to them, and these orbits are robust. In this paper a population dynamics model with hysteretic response of the prey to variations of the predator is introduced. In this model the prey moves between two patches, and the derivative of the Preisach operator is used to describe the hysteretic flow between the patches. A numerical example of a robust homoclinic loop is presented, and a mechanism creating this homoclinic trajectory is discussed. (English)
Keyword: robust homoclinic
Keyword: orbit Preisach operator
Keyword: operator-differential equations
Keyword: predator-prey model
MSC: 37L15
MSC: 47J40
MSC: 92D25
idZBL: Zbl 06362259
idMR: MR3238840
DOI: 10.21136/MB.2014.143855
.
Date available: 2014-07-14T08:31:13Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143855
.
Reference: [1] Appelbe, B., Flynn, D., McNamara, H., O'Kane, P., Pimenov, A., Pokrovskii, A., skii, D. Rachin-\allowbreak, Zhezherun, A.: Rate-independent hysteresis in terrestrial hydrology.Control Systems Magazine, IEEE 29 (2009), 44-69 DOI 10.1109/MCS.2008.930923. 10.1109/MCS.2008.930923
Reference: [2] Appelbe, B., Rachinskii, D., Zhezherun, A.: Hopf bifurcation in a van der Pol type oscillator with magnetic hysteresis.Physica B: Condensed Matter 403 (2008), 301-304 DOI 10.1016/j.physb.2007.08.034. 10.1016/j.physb.2007.08.034
Reference: [3] Bertotti, G., Mayergoyz, I. D., Serpico, C.: Nonlinear magnetization dynamics. Switching and relaxation phenomena.The Science of Hysteresis II. Physical Modeling, Micromagnetics, and Magnetization Dynamics G. Bertotti, I. D. Mayergoyz Elsevier, Amsterdam 435-565 (2006). Zbl 1148.78001, MR 2307930
Reference: [4] Bertotti, G., Mayergoyz, I., eds.: The Science of Hysteresis.Elsevier, Amsterdam (2006). MR 2307931
Reference: [5] Brokate, M., Pokrovskii, A., Rachinskii, D.: Asymptotic stability of continuum sets of periodic solutions to systems with hysteresis.J. Math. Anal. Appl. 319 (2006), 94-109. Zbl 1111.34035, MR 2217849, 10.1016/j.jmaa.2006.02.060
Reference: [6] Brokate, M., Pokrovskii, A., Rachinskii, D., Rasskazov, O.: Differential equations with hysteresis via a canonical example.The Science of Hysteresis I. Mathematical Modeling and Applications G. Bertotti, I. D. Mayergoyz Elsevier, Amsterdam 125-291 (2006). Zbl 1142.34026, MR 2307931
Reference: [7] Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions.Applied Mathematical Sciences 121 Springer, New York (1996). Zbl 0951.74002, MR 1411908, 10.1007/978-1-4612-4048-8_5
Reference: [8] Chiorino, G., Auger, P., Chassé, J.-L., Charles, S.: Behavioral choices based on patch selection: a model using aggregation methods.Math. Biosci. 157 (1999), 189-216. MR 1686474, 10.1016/S0025-5564(98)10082-2
Reference: [9] Cross, R., McNamara, H., Pokrovskii, A., Rachinskii, D.: A new paradigm for modelling hysteresis in macroeconomic flows.Physica B: Condensed Matter 403 (2008), 231-236 DOI 10.1016/j.physb.2007.08.017. 10.1016/j.physb.2007.08.017
Reference: [10] Davino, D., Krejčí, P., Visone, C.: Fully coupled modeling of magneto-mechanical hysteresis through `thermodynamic' compatibility.Smart Materials and Structures 22 (2013), 14 pages DOI 10.1088/0964-1726/22/9/095009. 10.1088/0964-1726/22/9/095009
Reference: [11] Diamond, P., Kuznetsov, N., Rachinskii, D.: On the Hopf bifurcation in control systems with a bounded nonlinearity asymptotically homogeneous at infinity.J. Differ. Equations 175 (2001), 1-26. Zbl 0984.34029, MR 1849221, 10.1006/jdeq.2000.3916
Reference: [12] Diamond, P., Rachinskii, D., Yumagulov, M.: Stability of large cycles in a nonsmooth problem with Hopf bifurcation at infinity.Nonlinear Anal., Theory Methods Appl. 42 (2000), 1017-1031. Zbl 0963.34034, MR 1780452
Reference: [13] Eleuteri, M., Kopfová, J., Krejčí, P.: Magnetohydrodynamic flow with hysteresis.SIAM J. Math. Anal. 41 (2009), 435-464. MR 2507458, 10.1137/080718383
Reference: [14] Guardia, M., Seara, T. M., Teixeira, M. A.: Generic bifurcations of low codimension of planar Filippov systems.J. Differ. Equations 250 (2011), 1967-2023. Zbl 1225.34046, MR 2763562, 10.1016/j.jde.2010.11.016
Reference: [15] Harrison, G. W.: Multiple stable equilibria in a predator-prey system.Bull. Math. Biol. 48 (1986), 137-148. Zbl 0585.92023, MR 0845634, 10.1007/BF02460019
Reference: [16] Hodgkin, A. L., Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. 117 (1952), 500-544 DOI 10.1007/BF02459568. 10.1113/jphysiol.1952.sp004764
Reference: [17] Krasnosel'skii, A., Rachinskii, D.: On a bifurcation governed by hysteresis nonlinearity.NoDEA, Nonlinear Differ. Equ. Appl. 9 (2002), 93-115. Zbl 1013.34036, MR 1891697, 10.1007/s00030-002-8120-2
Reference: [18] Krasnosel'skij, A., Rachinskij, D. I.: On the continua of cycles in systems with hysteresis.Dokl. Math. 63 (2001), 339-344. Zbl 1052.34052
Reference: [19] Krasnosel'skij, M. A., Pokrovskij, A. V.: Systems with Hysteresis. Translated from the Russian.Springer, Berlin (1989).
Reference: [20] Krejčí, P.: Hysteresis, Convexity and Dissipation in Hyperbolic Equations.GAKUTO International Series. Mathematical Sciences and Applications 8 Gakkotosho, Tokyo (1996). MR 2466538
Reference: [21] Krejčí, P.: On Maxwell equations with the Preisach hysteresis operator: The one-dimensional time-periodic case.Apl. Mat. 34 (1989), 364-374. Zbl 0701.35098, MR 1014077
Reference: [22] Krejčí, P.: Resonance in Preisach systems.Appl. Math. 45 (2000), 439-468. Zbl 1010.34038, MR 1800964, 10.1023/A:1022333500777
Reference: [23] Krejčí, P., O'Kane, J. P., Pokrovskii, A., Rachinskii, D.: Stability results for a soil model with singular hysteretic hydrology.Journal of Physics: Conference Series 268 (2011), 19 pages DOI 10.1088/1742-6596/268/1/012016. 10.1088/1742-6596/268/1/012016
Reference: [24] Krejčí, P., O'Kane, J. P., Pokrovskii, A., Rachinskii, D.: Properties of solutions to a class of differential models incorporating Preisach hysteresis operator.Physica D. Nonlinear Phenomena 241 (2012), 2010-2028. MR 2994340, 10.1016/j.physd.2011.05.005
Reference: [25] Kuhnen, K., Krejčí, P.: Compensation of complex hysteresis and creep effects in piezoelectrically actuated systems---a new Preisach modeling approach.IEEE Trans. Automat. Control 54 (2009), 537-550. MR 2191546, 10.1109/TAC.2009.2012984
Reference: [26] Kuznetsov, Yu. A.: Elements of Applied Bifurcation Theory.Applied Mathematical Sciences 112 Springer, New York (2004). Zbl 1082.37002, MR 2071006, 10.1007/978-1-4757-3978-7
Reference: [27] Kuznetsov, Yu. A., Rinaldi, S., Gragnani, A.: One-parameter bifurcations in planar Filippov systems.Int. J. Bifurcation Chaos Appl. Sci. Eng. 13 (2003), 2157-2188. Zbl 1079.34029, MR 2012652, 10.1142/S0218127403007874
Reference: [28] Mayergoyz, I. D.: Mathematical Models of Hysteresis and Their Applications.Elsevier, Amsterdam (2003). MR 1083150
Reference: [29] McCarthy, S., Rachinskii, D.: Dynamics of systems with Preisach memory near equilibria.Math. Bohem. 139 (2014), 39-73. MR 3231429
Reference: [30] Pimenov, A., Kelly, T. C., Korobeinikov, A., O'Callaghan, M. J., Pokrovskii, A. V., Rachinskii, D.: Memory effects in population dynamics: spread of infectious disease as a case study.Math. Model. Nat. Phenom. 7 (2012), 204-226. MR 2928740, 10.1051/mmnp/20127313
Reference: [31] Pimenov, A., Rachinskii, D.: Linear stability analysis of systems with Preisach memory.Discrete Contin. Dyn. Syst., Ser. B 11 (2009), 997-1018. Zbl 1181.47075, MR 2505656, 10.3934/dcdsb.2009.11.997
Reference: [32] Visintin, A.: Differential Models of Hysteresis.Applied Mathematical Sciences 111 Springer, Berlin (1994). Zbl 0820.35004, MR 1329094, 10.1007/978-3-662-11557-2
Reference: [33] Visone, C.: Hysteresis modelling and compensation for smart sensors and actuators.Journal of Physics: Conference Series 138 (2008), 23 pages DOI 10.1088/1742-6596/138/\allowbreak1/012028. 10.1088/1742-6596/138/\allowbreak1/012028
.

Files

Files Size Format View
MathBohem_139-2014-2_14.pdf 301.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo