Previous |  Up |  Next

Article

Keywords:
group ring; unit group; augmentation ideal; Jacobson radical
Summary:
Let $FG$ be a group algebra of a group $G$ over a field $F$ and ${\mathcal U}(FG)$ the unit group of $FG$. It is a classical question to determine the structure of the unit group of the group algebra of a finite group over a finite field. In this article, the structure of the unit group of the group algebra of the non-abelian group $G$ with order $21$ over any finite field of characteristic $3$ is established. We also characterize the structure of the unit group of $FA_4$ over any finite field of characteristic $3$ and the structure of the unit group of $FQ_{12}$ over any finite field of characteristic $2$, where $Q_{12}=\langle x, y; x^6=1, y^2=x^3, x^y=x^{-1} \rangle $.
References:
[1] Brockhaus, P.: On the radical of a group algebra. J. Algebra 95 (1985), 454-472. DOI 10.1016/0021-8693(85)90117-6 | MR 0801281 | Zbl 0568.20010
[2] Chen, W., Xie, C., Tang, G.: The unit groups of $F_{p^n}G$ of groups with order $21$. J. Guangxi Teachers Education University 30 (2013), 14-20.
[3] Creedon, L.: The unit group of small group algebras and the minimum counterexample to the isomorphism problem. Int. J. Pure Appl. Math. 49 (2008), 531-537. MR 2482633 | Zbl 1192.16035
[4] Creedon, L., Gildea, J.: The structure of the unit group of the group algebra $F_{2^k}D_8$. Can. Math. Bull. 54 (2011), 237-243. DOI 10.4153/CMB-2010-098-5 | MR 2884238
[5] Creedon, L., Gildea, J.: The structure of the unit group of the group algebra $F_{3^k}D_6$. Int. J. Pure Appl. Math. 45 (2008), 315-320. MR 2421868
[6] Gildea, J.: The structure of $\mathcal{U}(F_{5^k}D_{20})$. Int. Electron. J. Algebra (electronic only) 8 (2010), 153-160. MR 2660546
[7] Gildea, J.: The structure of the unit group of the group algebra $F_{3^k}(C_3\times D_6)$. Commun. Algebra 38 (2010), 3311-3317. DOI 10.1080/00927872.2010.482552 | MR 2724220
[8] Gildea, J.: The structure of the unit group of the group algebra of $F_{2^k}A_4$. Czech. Math. J. 61 (2011), 531-539. DOI 10.1007/s10587-011-0071-5 | MR 2905421
[9] Gildea, J.: The structure of the unit group of the group algebra of Paulis's group over any field of characteristic $2$. Int. J. Algebra Comput. 20 (2010), 721-729. DOI 10.1142/S0218196710005856 | MR 2726571 | Zbl 1205.16031
[10] Gildea, J.: Units of group algebras of non-Abelian groups of order $16$ and exponent $4$ over $F_{2^k}$. Results Math. 61 (2012), 245-254. DOI 10.1007/s00025-011-0094-0 | MR 2925119
[11] Gildea, J., Monaghan, F.: Units of some group algebras of groups of order $12$ over any finite field of characteristic $3$. Algebra Discrete Math. 11 (2011), 46-58. MR 2868359 | Zbl 1256.16023
[12] Nezhmetdinov, T. I.: Groups of units of finite commutative group rings. Commun. Algebra 38 (2010), 4669-4681. DOI 10.1080/00927870903451918 | MR 2805136 | Zbl 1216.16026
[13] Passman, D. S.: The Algebraic Structure of Group Rings. Pure and Applied Mathematics Wiley, New York (1977). MR 0470211 | Zbl 0368.16003
[14] Milies, C. Polcino, Sehgal, S. K.: An Introduction to Group Rings. Algebras and Applications 1 Kluwer Academic Publishers, Dordrecht (2002). DOI 10.1007/978-94-010-0405-3_3 | MR 1896125
[15] Sharma, R. K., Srivastava, J. B., Khan, M.: The unit group of $FA_4$. Publ. Math. 71 (2007), 21-26. MR 2340031 | Zbl 1135.16033
[16] Tang, G., Gao, Y.: The unit group of $FG$ of groups with order $12$. Int. J. Pure Appl. Math. 73 (2011), 143-158. MR 2933951
Partner of
EuDML logo