Previous |  Up |  Next

Article

Title: The upper triangular algebra loop of degree $4$ (English)
Author: Johnson, K. W.
Author: Munywoki, M.
Author: Smith, Jonathan D. H.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 4
Year: 2014
Pages: 457-470
Summary lang: English
.
Category: math
.
Summary: A natural loop structure is defined on the set $U_4$ of unimodular upper-triangular matrices over a given field. Inner mappings of the loop are computed. It is shown that the loop is non-associative and nilpotent, of class 3. A detailed listing of the loop conjugacy classes is presented. In particular, one of the loop conjugacy classes is shown to be properly contained in a superclass of the corresponding algebra group. (English)
Keyword: algebra group
Keyword: quasigroup
Keyword: loop
Keyword: supercharacter
Keyword: fusion scheme
MSC: 20N05
idZBL: Zbl 06391554
idMR: MR3269008
.
Date available: 2014-10-09T09:48:21Z
Last updated: 2017-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143970
.
Reference: [1] Aguiar M. et al.: Supercharacters, symmetric functions in non-commuting variables, and related Hopf algebras.Adv. Math. 229 (2012), 2310–2337. MR 2880223, 10.1016/j.aim.2011.12.024
Reference: [2] André C.A.M.: Basic characters of the unitriangular group.Algebra 175 (1995), 287–319. Zbl 1064.20005, MR 1338979, 10.1006/jabr.1995.1187
Reference: [3] Bruck R.H.: Contributions to the theory of loops.Trans. Amer. Math. Soc. 60 (1946), 245–354. Zbl 0061.02201, MR 0017288, 10.1090/S0002-9947-1946-0017288-3
Reference: [4] Bruck R.H.: A Survey of Binary Systems.Springer, Berlin, 1958. Zbl 0141.01401, MR 0093552
Reference: [5] Diaconis P., Isaacs I.M.: Supercharacters and superclasses for algebra groups.Trans. Amer. Math. Soc. 360 (2008), 2359–2392. Zbl 1137.20008, MR 2373317, 10.1090/S0002-9947-07-04365-6
Reference: [6] Johnson K.W., Smith J.D.H.: Characters of finite quasigroups III: quotients and fusion.Eur. J. Comb. 10 (1989), 47–56. Zbl 0667.20053, MR 0977179, 10.1016/S0195-6698(89)80032-0
Reference: [7] Smith J.D.H.: An Introduction to Quasigroups and Their Representations.Chapman and Hall/CRC, Boca Raton, FL, 2007. Zbl 1122.20035, MR 2268350
Reference: [8] Smith J.D.H., Romanowska A.B.: Post-Modern Algebra.Wiley, New York, NY, 1999. Zbl 0946.00001, MR 1673047
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-4_3.pdf 235.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo