Previous |  Up |  Next

Article

Title: Some regular quasivarieties of commutative binary modes (English)
Author: Matczak, K.
Author: Romanowska, A. B.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 4
Year: 2014
Pages: 471-484
Summary lang: English
.
Category: math
.
Summary: Irregular (quasi)varieties of groupoids are (quasi)varieties that do not contain semilattices. The regularization of a (strongly) irregular variety $\mathcal{V}$ of groupoids is the smallest variety containing $\mathcal{V}$ and the variety $\mathcal{S}$ of semilattices. Its quasiregularization is the smallest quasivariety containing $\mathcal{V}$ and $\mathcal{S}$. In an earlier paper the authors described the lattice of quasivarieties of cancellative commutative binary modes, i.e. idempotent commutative and entropic (or medial) groupoids. They are all irregular and the lattice contains all irregular varieties of such groupoids. This paper extends the earlier result, by investigating some regular quasivarieties. It provides a full description of the lattice of subquasivarieties of the regularization of any irregular variety of commutative binary modes. (English)
Keyword: regular quasivarieties
Keyword: regular quasi-identity
Keyword: modes
Keyword: affine spaces
Keyword: commutative binary modes
MSC: 08A62
MSC: 08C15
MSC: 20N02
MSC: 20N05
idZBL: Zbl 06391555
idMR: MR3269009
.
Date available: 2014-10-09T09:50:16Z
Last updated: 2017-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143971
.
Reference: [1] Bergman C., Romanowska A.: Subquasivarieties of regularized varieties.Algebra Universalis 36 (1996), 536–563. Zbl 0902.08013, MR 1419368, 10.1007/BF01233924
Reference: [2] Hogben L., Bergman C.: Deductive varieties of modules and universal algebras.Trans. Amer. Math. Soc. 289 (1985), 303–320. Zbl 0563.08010, MR 0779065, 10.1090/S0002-9947-1985-0779065-X
Reference: [3] Ježek J., Kepka T.: Semigroup representation of commutative idempotent abelian groupoids.Comment. Math. Univ. Carolin. 16 (1975), 487–500. MR 0382484
Reference: [4] Ježek J., Kepka T.: The lattice of varieties of commutative idempotent abelian distributive groupoids.Algebra Universalis 5 (1975), 225–237. MR 0398952, 10.1007/BF02485256
Reference: [5] Ježek J., Kepka T.: Free commutative idempotent abelian groupoids and quasigroups.Acta Univ. Carolin. Math. Phys. 17 (1976), 13–19. Zbl 0394.20058, MR 0422479
Reference: [6] Ježek J., Kepka T.: Ideal free CIM-groupoids and open convex sets.Lecture Notes in Mathematics, 1004, Springer, Berlin, 1983, pp. 166–176. 10.1007/BFb0063437
Reference: [7] Matczak K., Romanowska A.: Quasivarieties of cancellative commutative binary modes.Studia Logica 78 (2004), 321–335. Zbl 1092.08005, MR 2108032, 10.1007/s11225-005-1335-6
Reference: [8] Matczak K., Romanowska A.: Irregular quasivarieties of commutative binary modes.Internat. J. Algebra Comput. 15 (2005), 699–715. Zbl 1103.08004, MR 2160574, 10.1142/S0218196705002487
Reference: [9] Matczak K., Romanowska A.B., Smith J.D.H.: Dyadic polygones.Internat. J. Algebra Comput. 21 (2011), 387–408. MR 2804518, 10.1142/S0218196711006248
Reference: [10] Romanowska A.B., Smith J.D.H.: Modal Theory.Heldermann, Berlin, 1985. Zbl 0553.08001, MR 0788695
Reference: [11] Romanowska A.B., Smith J.D.H.: On the structure of semilattice sums.Czechoslovak Math. J. 41 (1991), 24–43. Zbl 0793.08010, MR 1087619
Reference: [12] Smith J.D.H., Romanowska A.B.: Modes.World Scientific, Singapore, 2002. Zbl 1060.08009, MR 1932199
Reference: [13] Smith J.D.H., Romanowska A.B.: Post-Modern Algebra.Wiley, New York, NY, 1999. Zbl 0946.00001, MR 1673047
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-4_4.pdf 284.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo