Title:
|
$(n,d)$-injective covers, $n$-coherent rings, and $(n,d)$-rings (English) |
Author:
|
Li, Weiqing |
Author:
|
Ouyang, Baiyu |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
64 |
Issue:
|
2 |
Year:
|
2014 |
Pages:
|
289-304 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
It is known that a ring $R$ is left Noetherian if and only if every left $R$-module has an injective (pre)cover. We show that $(1)$ if $R$ is a right $n$-coherent ring, then every right $R$-module has an $(n,d)$-injective (pre)cover; $(2)$ if $R$ is a ring such that every $(n,0)$-injective right $R$-module is $n$-pure extending, and if every right $R$-module has an $(n,0)$-injective cover, then $R$ is right $n$-coherent. As applications of these results, we give some characterizations of $(n,d)$-rings, von Neumann regular rings and semisimple rings. (English) |
Keyword:
|
cover |
Keyword:
|
envelope |
Keyword:
|
$n$-coherent ring |
Keyword:
|
$(n,d)$-injective |
Keyword:
|
$(n,d)$-ring |
MSC:
|
16D40 |
MSC:
|
16D50 |
MSC:
|
16E40 |
MSC:
|
16P70 |
MSC:
|
18G25 |
idZBL:
|
Zbl 06391494 |
idMR:
|
MR3277736 |
DOI:
|
10.1007/s10587-014-0101-1 |
. |
Date available:
|
2014-11-10T09:26:25Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143997 |
. |
Reference:
|
[1] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules.(2nd ed.). Graduate Texts in Mathematics 13 Springer, New York (1992). Zbl 0765.16001, MR 1245487 |
Reference:
|
[2] Bican, L., Bashir, R. El, Enochs, E.: All modules have flat covers.Bull. Lond. Math. Soc. 33 (2001), 385-390. Zbl 1029.16002, MR 1832549, 10.1017/S0024609301008104 |
Reference:
|
[3] Chen, J., Ding, N.: On $n$-coherent rings.Commun. Algebra 24 (1996), 3211-3216. Zbl 0877.16010, MR 1402554, 10.1080/00927879608825742 |
Reference:
|
[4] Costa, D. L.: Parameterizing families of non-Noetherian rings.Commun. Algebra 22 (1994), 3997-4011. Zbl 0814.13010, MR 1280104, 10.1080/00927879408825061 |
Reference:
|
[5] Damiano, R. F.: Coflat rings and modules.Pac. J. Math. 81 (1979), 349-369. Zbl 0415.16021, MR 0547604, 10.2140/pjm.1979.81.349 |
Reference:
|
[6] Ding, N.: On envelopes with the unique mapping property.Commun. Algebra 24 (1996), 1459-1470. Zbl 0863.16005, MR 1380605, 10.1080/00927879608825646 |
Reference:
|
[7] Enochs, E. E.: Injective and flat covers, envelopes and resolvents.Isr. J. Math. 39 (1981), 189-209. Zbl 0464.16019, MR 0636889, 10.1007/BF02760849 |
Reference:
|
[8] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra.De Gruyter Expositions in Mathematics 30 Walter de Gruyter, Berlin (2000). Zbl 0952.13001, MR 1753146 |
Reference:
|
[9] Facchini, A.: Module Theory: Endomorphism Rings and Direct Sum Decompositions in Some Classes of Modules.Progress in Mathematics 167 Birkhäuser, Basel (1998). Zbl 0930.16001, MR 1634015 |
Reference:
|
[10] Mao, L., Ding, N.: Relative projective modules and relative injective modules.Commun. Algebra 34 (2006), 2403-2418. Zbl 1104.16002, MR 2240382, 10.1080/00927870600649111 |
Reference:
|
[11] Pinzon, K.: Absolutely pure covers.Commun. Algebra 36 (2008), 2186-2194. Zbl 1162.16003, MR 2418384, 10.1080/00927870801952694 |
Reference:
|
[12] Rotman, J. J.: An Introduction to Homological Algebra.(2nd ed.). Universitext Springer, New York (2009). Zbl 1157.18001, MR 2455920 |
Reference:
|
[13] Stenström, B.: Coherent rings and $FP$-injective modules.J. Lond. Math. Soc., II. Ser. 2 (1970), 323-329. Zbl 0194.06602, MR 0258888, 10.1112/jlms/s2-2.2.323 |
Reference:
|
[14] Xu, J.: Flat Covers of Modules.Lecture Notes in Mathematics 1634 Springer, Berlin (1996). Zbl 0860.16002, MR 1438789, 10.1007/BFb0094173 |
Reference:
|
[15] Ming, R. Yue Chi: On quasi-injectivity and von Neumann regularity.Monatsh. Math. 95 (1983), 25-32. MR 0697346, 10.1007/BF01301145 |
Reference:
|
[16] Zhou, D.: On $n$-coherent rings and $(n,d)$-rings.Commun. Algebra 32 (2004), 2425-2441. Zbl 1089.16001, MR 2100480, 10.1081/AGB-120037230 |
Reference:
|
[17] Zhou, D. X.: Cotorsion pair extensions.Acta Math. Sin., Engl. Ser. 25 (2009), 1567-1582. Zbl 1215.16016, MR 2544301, 10.1007/s10114-009-6385-7 |
. |