Previous |  Up |  Next

Article

Title: $(n,d)$-injective covers, $n$-coherent rings, and $(n,d)$-rings (English)
Author: Li, Weiqing
Author: Ouyang, Baiyu
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 2
Year: 2014
Pages: 289-304
Summary lang: English
.
Category: math
.
Summary: It is known that a ring $R$ is left Noetherian if and only if every left $R$-module has an injective (pre)cover. We show that $(1)$ if $R$ is a right $n$-coherent ring, then every right $R$-module has an $(n,d)$-injective (pre)cover; $(2)$ if $R$ is a ring such that every $(n,0)$-injective right $R$-module is $n$-pure extending, and if every right $R$-module has an $(n,0)$-injective cover, then $R$ is right $n$-coherent. As applications of these results, we give some characterizations of $(n,d)$-rings, von Neumann regular rings and semisimple rings. (English)
Keyword: cover
Keyword: envelope
Keyword: $n$-coherent ring
Keyword: $(n,d)$-injective
Keyword: $(n,d)$-ring
MSC: 16D40
MSC: 16D50
MSC: 16E40
MSC: 16P70
MSC: 18G25
idZBL: Zbl 06391494
idMR: MR3277736
DOI: 10.1007/s10587-014-0101-1
.
Date available: 2014-11-10T09:26:25Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143997
.
Reference: [1] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules.(2nd ed.). Graduate Texts in Mathematics 13 Springer, New York (1992). Zbl 0765.16001, MR 1245487
Reference: [2] Bican, L., Bashir, R. El, Enochs, E.: All modules have flat covers.Bull. Lond. Math. Soc. 33 (2001), 385-390. Zbl 1029.16002, MR 1832549, 10.1017/S0024609301008104
Reference: [3] Chen, J., Ding, N.: On $n$-coherent rings.Commun. Algebra 24 (1996), 3211-3216. Zbl 0877.16010, MR 1402554, 10.1080/00927879608825742
Reference: [4] Costa, D. L.: Parameterizing families of non-Noetherian rings.Commun. Algebra 22 (1994), 3997-4011. Zbl 0814.13010, MR 1280104, 10.1080/00927879408825061
Reference: [5] Damiano, R. F.: Coflat rings and modules.Pac. J. Math. 81 (1979), 349-369. Zbl 0415.16021, MR 0547604, 10.2140/pjm.1979.81.349
Reference: [6] Ding, N.: On envelopes with the unique mapping property.Commun. Algebra 24 (1996), 1459-1470. Zbl 0863.16005, MR 1380605, 10.1080/00927879608825646
Reference: [7] Enochs, E. E.: Injective and flat covers, envelopes and resolvents.Isr. J. Math. 39 (1981), 189-209. Zbl 0464.16019, MR 0636889, 10.1007/BF02760849
Reference: [8] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra.De Gruyter Expositions in Mathematics 30 Walter de Gruyter, Berlin (2000). Zbl 0952.13001, MR 1753146
Reference: [9] Facchini, A.: Module Theory: Endomorphism Rings and Direct Sum Decompositions in Some Classes of Modules.Progress in Mathematics 167 Birkhäuser, Basel (1998). Zbl 0930.16001, MR 1634015
Reference: [10] Mao, L., Ding, N.: Relative projective modules and relative injective modules.Commun. Algebra 34 (2006), 2403-2418. Zbl 1104.16002, MR 2240382, 10.1080/00927870600649111
Reference: [11] Pinzon, K.: Absolutely pure covers.Commun. Algebra 36 (2008), 2186-2194. Zbl 1162.16003, MR 2418384, 10.1080/00927870801952694
Reference: [12] Rotman, J. J.: An Introduction to Homological Algebra.(2nd ed.). Universitext Springer, New York (2009). Zbl 1157.18001, MR 2455920
Reference: [13] Stenström, B.: Coherent rings and $FP$-injective modules.J. Lond. Math. Soc., II. Ser. 2 (1970), 323-329. Zbl 0194.06602, MR 0258888, 10.1112/jlms/s2-2.2.323
Reference: [14] Xu, J.: Flat Covers of Modules.Lecture Notes in Mathematics 1634 Springer, Berlin (1996). Zbl 0860.16002, MR 1438789, 10.1007/BFb0094173
Reference: [15] Ming, R. Yue Chi: On quasi-injectivity and von Neumann regularity.Monatsh. Math. 95 (1983), 25-32. MR 0697346, 10.1007/BF01301145
Reference: [16] Zhou, D.: On $n$-coherent rings and $(n,d)$-rings.Commun. Algebra 32 (2004), 2425-2441. Zbl 1089.16001, MR 2100480, 10.1081/AGB-120037230
Reference: [17] Zhou, D. X.: Cotorsion pair extensions.Acta Math. Sin., Engl. Ser. 25 (2009), 1567-1582. Zbl 1215.16016, MR 2544301, 10.1007/s10114-009-6385-7
.

Files

Files Size Format View
CzechMathJ_64-2014-2_1.pdf 291.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo