Previous |  Up |  Next

Article

Title: On geometric convergence of discrete groups (English)
Author: Yang, Shihai
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 2
Year: 2014
Pages: 305-310
Summary lang: English
.
Category: math
.
Summary: One of the basic questions in the Kleinian group theory is to understand both algebraic and geometric limiting behavior of sequences of discrete subgroups. In this paper we consider the geometric convergence in the setting of the isometric group of the real or complex hyperbolic space. It is known that if $\Gamma $ is a non-elementary finitely generated group and $\rho _{i}\colon \Gamma \rightarrow {\rm SO}(n,1)$ a sequence of discrete and faithful representations, then the geometric limit of $\rho _{i}(\Gamma )$ is a discrete subgroup of ${\rm SO}(n,1)$. We generalize this result by showing that for a sequence of discrete and non-elementary subgroups $\{G_{j}\}$ of ${\rm SO}(n,1)$ or ${\rm PU}(n,1)$, if $\{G_{j}\}$ has uniformly bounded torsion, then its geometric limit is either elementary, or discrete and non-elementary. (English)
Keyword: discrete group
Keyword: geometric convergence
Keyword: uniformly bounded torsion
MSC: 20H10
MSC: 30C62
MSC: 30F40
idZBL: Zbl 06391495
idMR: MR3277737
DOI: 10.1007/s10587-014-0102-0
.
Date available: 2014-11-10T09:27:28Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143999
.
Reference: [1] Abikoff, W., Haas, A.: Nondiscrete groups of hyperbolic motions.Bull. Lond. Math. Soc. 22 (1990), 233-238. Zbl 0709.20026, MR 1041136, 10.1112/blms/22.3.233
Reference: [2] Belegradek, I.: Intersections in hyperbolic manifolds.Geom. Topol. 2 (1998), 117-144. Zbl 0931.57009, MR 1633286, 10.2140/gt.1998.2.117
Reference: [3] Chen, S. S., Greenberg, L.: Hyperbolic spaces.Contributions to Analysis, Collection of Papers Dedicated to Lipman Bers L. V. Ahlfors et al. Academic Press, New York (1974), 49-87. Zbl 0295.53023, MR 0377765
Reference: [4] Jørgensen, T., Marden, A.: Algebraic and geometric convergence of Kleinian groups.Math. Scand. 66 (1990), 47-72. Zbl 0738.30032, MR 1060898, 10.7146/math.scand.a-12292
Reference: [5] Kapovich, M.: Hyperbolic Manifolds and Discrete Groups. Reprint of the 2001 edition.Modern Birkhäuser Classics Birkhäuser, Boston (2009). MR 2553578
Reference: [6] Martin, G. J.: On discrete isometry groups of negative curvature.Pac. J. Math. 160 (1993), 109-127. Zbl 0822.57026, MR 1227506, 10.2140/pjm.1993.160.109
Reference: [7] Martin, G. J.: On discrete Möbius groups in all dimensions: A generalization of Jørgensen's inequality.Acta Math. 163 (1989), 253-289. Zbl 0698.20037, MR 1032075, 10.1007/BF02392737
Reference: [8] Tukia, P.: Convergence groups and Gromov's metric hyperbolic spaces.N. Z. J. Math. (electronic only) 23 (1994), 157-187. Zbl 0855.30036, MR 1313451
.

Files

Files Size Format View
CzechMathJ_64-2014-2_2.pdf 220.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo