Previous |  Up |  Next

Article

Title: On the signless Laplacian spectral characterization of the line graphs of $T$-shape trees (English)
Author: Wang, Guoping
Author: Guo, Guangquan
Author: Min, Li
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 2
Year: 2014
Pages: 311-325
Summary lang: English
.
Category: math
.
Summary: A graph is determined by its signless Laplacian spectrum if no other non-isomorphic graph has the same signless Laplacian spectrum (simply $G$ is $DQS$). Let $T(a,b,c)$ denote the $T$-shape tree obtained by identifying the end vertices of three paths $P_{a+2}$, $P_{b+2}$ and $P_{c+2}$. We prove that its all line graphs $\mathcal {L}(T(a,b,c))$ except $\mathcal {L}(T(t,t,2t+1))$ ($t\geq 1$) are $DQS$, and determine the graphs which have the same signless Laplacian spectrum as $\mathcal {L}(T(t,t,2t+1))$. Let $\mu _1(G)$ be the maximum signless Laplacian eigenvalue of the graph $G$. We give the limit of $\mu _1(\mathcal {L}(T(a,b,c)))$, too. (English)
Keyword: signless Laplacian spectrum
Keyword: cospectral graphs
Keyword: $T$-shape tree
MSC: 05C50
MSC: 15A18
idZBL: Zbl 06391496
idMR: MR3277738
DOI: 10.1007/s10587-014-0103-z
.
Date available: 2014-11-10T09:29:08Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144000
.
Reference: [1] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs. Theory and Applications.3rd rev. a. enl. J. A. Barth, Leipzig (1995). Zbl 0824.05046, MR 1324340
Reference: [2] Cvetković, D., Rowlinson, P., Simić, S. K.: Signless Laplacians of finite graphs.Linear Algebra Appl. 423 (2007), 155-171. MR 2312332, 10.1016/j.laa.2007.01.009
Reference: [3] Cvetković, D., Rowlinson, P., Simić, S. K.: Eigenvalue bounds for the signless Laplacian.Publ. Inst. Math., Nouv. Sér. 81 (2007), 11-27. Zbl 1164.05038, MR 2401311, 10.2298/PIM0795011C
Reference: [4] Cvetković, D., Simić, S. K.: Towards a spectral theory of graphs based on signless Laplacian. I.Publ. Inst. Math., Nouv. Sér. 85 (2009), 19-33. MR 2536686
Reference: [5] Cvetković, D., Simić, S. K.: Towards a spectral theory of graphs based on signless Laplacian. II.Linear Algebra Appl. 432 (2010), 2257-2272. MR 2599858, 10.1016/j.laa.2009.05.020
Reference: [6] Ghareghani, N., Omidi, G. R., Tayfeh-Rezaie, B.: Spectral characterization of graphs with index at most $\sqrt{2+\sqrt{5}}$.Linear Algebra Appl. 420 (2007), 483-489. Zbl 1107.05058, MR 2278224
Reference: [7] Omidi, G. R.: On a signless Laplacian spectral characterizaiton of $T$-shape trees.Linear Algebra Appl. 431 (2009), 1607-1615. MR 2555062, 10.1016/j.laa.2009.05.035
Reference: [8] Ramezani, F., Broojerdian, N., Tayfeh-Rezaie, B.: A note on the spectral characterization of $\theta$-graphs.Linear Algebra Appl. 431 (2009), 626-632. Zbl 1203.05098, MR 2535538
Reference: [9] Dam, E. R. van, Haemers, W. H.: Which graphs are determined by their spectrum?.Linear Algebra Appl. Special issue on the Combinatorial Matrix Theory Conference (Pohang, 2002) 373 (2003), 241-272. MR 2022290
Reference: [10] Dam, E. R. van, Haemers, W. H.: Developments on spectral characterizations of graphs.Discrete Math. 309 (2009), 576-586. MR 2499010, 10.1016/j.disc.2008.08.019
Reference: [11] Wang, J. F., Huang, Q. X., Belardo, F., Marzi, E. M. L.: On the spectral characterizations of $\infty$-graphs.Discrete Math. 310 (2010), 1845-1855. Zbl 1231.05174, MR 2629903, 10.1016/j.disc.2010.01.021
Reference: [12] Wang, W., Xu, C. X.: On the spectral characterization of $T$-shape trees.Linear Algebra Appl. 414 (2006), 492-501. Zbl 1086.05050, MR 2214401, 10.1016/j.laa.2005.10.031
Reference: [13] Wang, W., Xu, C. X.: Note: The $T$-shape tree is determined by its Laplacian spectrum.Linear Algebra Appl. 419 (2006), 78-81. MR 2263111
Reference: [14] Zhang, Y. P., Liu, X. G., Zhang, B. Y., Yong, X. R.: The lollipop graph is determined by its $Q$-spectrum.Discrete Math. 309 (2009), 3364-3369. Zbl 1182.05084, MR 2526754, 10.1016/j.disc.2008.09.052
.

Files

Files Size Format View
CzechMathJ_64-2014-2_3.pdf 334.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo