Previous |  Up |  Next

Article

Title: The group of commutativity preserving maps on strictly upper triangular matrices (English)
Author: Wang, Dengyin
Author: Zhu, Min
Author: Rou, Jianling
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 2
Year: 2014
Pages: 335-350
Summary lang: English
.
Category: math
.
Summary: Let $\mathcal {N}=N_n(R)$ be the algebra of all $n\times n$ strictly upper triangular matrices over a unital commutative ring $R$. A map $\varphi $ on $\mathcal {N}$ is called preserving commutativity in both directions if $xy=yx\Leftrightarrow \varphi (x)\varphi (y)=\varphi (y)\varphi (x)$. In this paper, we prove that each invertible linear map on $\mathcal {N}$ preserving commutativity in both directions is exactly a quasi-automorphism of $\mathcal {N}$, and a quasi-automorphism of $\mathcal {N}$ can be decomposed into the product of several standard maps, which extains the main result of Y. Cao, Z. Chen and C. Huang (2002) from fields to rings. (English)
Keyword: commutativity preserving map
Keyword: automorphism
Keyword: commutative ring
MSC: 13C10
MSC: 15A04
MSC: 15A27
MSC: 15A99
MSC: 17C30
idZBL: Zbl 06391498
idMR: MR3277740
DOI: 10.1007/s10587-014-0105-x
.
Date available: 2014-11-10T09:32:09Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144002
.
Reference: [1] Brešar, M.: Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings.Trans. Am. Math. Soc. 335 525-546 (1993). Zbl 0791.16028, MR 1069746, 10.1090/S0002-9947-1993-1069746-X
Reference: [2] Cao, Y., Chen, Z., Huang, C.: Commutativity preserving linear maps and Lie automorphisms of strictly triangular matrix space.Linear Algebra Appl. 350 41-66 (2002). Zbl 1007.15007, MR 1906746
Reference: [3] Cao, Y., Tan, Z.: Automorphisms of the Lie algebra of strictly upper triangular matrices over a commutative ring.Linear Algebra Appl. 360 105-122 (2003). Zbl 1015.17017, MR 1948476
Reference: [4] Marcoux, L. W., Sourour, A. R.: Commutativity preserving linear maps and Lie automorphisms of triangular matrix algebras.Linear Algebra Appl. 288 89-104 (1999). Zbl 0933.15029, MR 1670535
Reference: [5] Omladič, M.: On operators preserving commutativity.J. Funct. Anal. 66 105-122 (1986). Zbl 0587.47051, MR 0829380, 10.1016/0022-1236(86)90084-4
Reference: [6] Šemrl, P.: Non-linear commutativity preserving maps.Acta Sci. Math. 71 781-819 (2005). MR 2206609
Reference: [7] Wang, D., Chen, Z.: Invertible linear maps on simple Lie algebras preserving commutativity.Proc. Am. Math. Soc. 139 3881-3893 (2011). Zbl 1258.17014, MR 2823034, 10.1090/S0002-9939-2011-10834-7
Reference: [8] Watkins, W.: Linear maps that preserve commuting pairs of matrices.Linear Algebra Appl. 14 29-35 (1976). Zbl 0329.15005, MR 0480574, 10.1016/0024-3795(76)90060-4
.

Files

Files Size Format View
CzechMathJ_64-2014-2_5.pdf 288.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo