Previous |  Up |  Next

Article

Title: Pointwise inequalities of logarithmic type in Hardy-Hölder spaces (English)
Author: Chaabane, Slim
Author: Feki, Imed
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 2
Year: 2014
Pages: 351-363
Summary lang: English
.
Category: math
.
Summary: We prove some optimal logarithmic estimates in the Hardy space ${H}^{\infty }(G)$ with Hölder regularity, where $G$ is the open unit disk or an annular domain of $\mathbb {C}$. These estimates extend the results established by S. Chaabane and I. Feki in the Hardy-Sobolev space $H^{k,\infty }$ of the unit disk and those of I. Feki in the case of an annular domain. The proofs are based on a variant of Hardy-Landau-Littlewood inequality for Hölder functions. As an application of these estimates, we study the stability of both the Cauchy problem for the Laplace operator and the Robin inverse problem. (English)
Keyword: Hardy-Sobolev space
Keyword: Hardy-Landau-Littlewood inequality
Keyword: Hölder regularity
Keyword: Cauchy problem
Keyword: inverse problem
Keyword: logarithmic estimate
MSC: 30C40
MSC: 30H05
MSC: 30H10
idZBL: Zbl 06391499
idMR: MR3277741
DOI: 10.1007/s10587-014-0106-9
.
Date available: 2014-11-10T09:34:43Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144003
.
Reference: [1] Baratchart, L., Leblond, J.: Harmonic identification and Hardy class trace on an arc of the circle.Optimisation et Contrôle. Proceedings of the Colloquium in Honor of Jean Céa's sixtieth birthday held in Sophia-Antipolis, 1992 J.-A. Désidéri Cépaduès Éditions Toulouse (1993), 17-29 French. Zbl 0922.93012, MR 1284961
Reference: [2] Baratchart, L., Leblond, J., Partington, J. R.: Hardy approximation to $L^\infty$ functions on subsets of the circle.Constr. Approx. 12 (1996), 423-435. MR 1405007
Reference: [3] Baratchart, L., Zerner, M.: On the recovery of functions from pointwise boundary values in a Hardy-Sobolev class of the disk.J. Comput. Appl. Math 46 (1993), 255-269. MR 1222486, 10.1016/0377-0427(93)90300-Z
Reference: [4] Brézis, H.: Functional Analysis. Theory and Applications.Collection of Applied Mathematics for the Master's Degree Masson, Paris (1983), French. MR 0697382
Reference: [5] Chaabane, S., Feki, I.: Optimal logarithmic estimates in Hardy-Sobolev spaces $H^{k,\infty}$.C. R., Math., Acad. Sci. Paris 347 (2009), 1001-1006. MR 2554565, 10.1016/j.crma.2009.07.018
Reference: [6] Chaabane, S., Fellah, I., Jaoua, M., Leblond, J.: Logarithmic stability estimates for a Robin coefficient in two-dimensional Laplace inverse problems.Inverse Probl. 20 (2004), 47-59. Zbl 1055.35135, MR 2044605
Reference: [7] Chaabane, S., Ferchichi, J., Kunisch, K.: Differentiability properties of the $L^{1}$-tracking functional and application to the Robin inverse problem.Inverse Probl. 20 (2004), 1083-1097. MR 2087981
Reference: [8] Chaabane, S., Jaoua, M.: Identification of Robin coefficients by the means of boundary measurements.Inverse Probl. 15 (1999), 1425-1438. Zbl 0943.35100, MR 1733209
Reference: [9] Chaabane, S., Jaoua, M., Leblond, J.: Parameter identification for Laplace equation and approximation in Hardy classes.J. Inverse Ill-Posed Probl. 11 (2003), 33-57. Zbl 1028.35163, MR 1972169, 10.1515/156939403322004928
Reference: [10] Chalendar, I., Partington, J. R.: Approximation problems and representations of Hardy spaces in circular domains.Stud. Math. 136 (1999), 255-269. Zbl 0952.30033, MR 1724247
Reference: [11] Chevreau, B., Pearcy, C. M., Shields, A. L.: Finitely connected domains $G$, representations of $H^{\infty}(G)$, and invariant subspaces.J. Oper. Theory 6 (1981), 375-405. MR 0643698
Reference: [12] Duren, P. L.: Theory of $H^p$ Spaces.Pure and Applied Mathematics 38 Academic Press, New York (1970). MR 0268655
Reference: [13] Feki, I.: Estimates in the Hardy-Sobolev space of the annulus and stability result.Czech. Math. J. 63 (2013), 481-495. Zbl 1289.30231, MR 3073973, 10.1007/s10587-013-0032-2
Reference: [14] Feki, I., Nfata, H., Wielonsky, F.: Optimal logarithmic estimates in the Hardy-Sobolev space of the disk and stability results.J. Math. Anal. Appl. 395 (2012), 366-375. Zbl 1250.30051, MR 2943628, 10.1016/j.jmaa.2012.05.055
Reference: [15] Gagliardo, E.: Proprietà di alcune classi di funzioni più variabili.Ricerche Mat. 7 (1958), 102-137 Italian. MR 0102740
Reference: [16] Hardy, G. H., Landau, E., Littlewood, J. E.: Some inequalities satisfied by the integrals or derivatives of real or analytic functions.Math. Z. 39 (1935), 677-695. Zbl 0011.06102, MR 1545530, 10.1007/BF01201386
Reference: [17] Kwong, M. K., Zettl, A.: Norm Inequalities for Derivatives and Differences.Lecture Notes in Mathematics 1536 Springer, Berlin (1992). Zbl 0925.26011, MR 1223546, 10.1007/BFb0090864
Reference: [18] Leblond, L., Mahjoub, M., Partington, J. R.: Analytic extensions and Cauchy-type inverse problems on annular domains: stability results.J. Inverse Ill-Posed Probl. 14 (2006), 189-204. Zbl 1111.35121, MR 2242304, 10.1515/156939406777571049
Reference: [19] Marangunić, L. J., Pečarić, J.: On Landau type inequalities for functions with Hölder continuous derivatives.JIPAM, J. Inequal. Pure Appl. Math. (electronic only) 5 (2004), Paper No. 72, 5 pages. Zbl 1060.26018, MR 2084881
Reference: [20] Meftahi, H., Wielonsky, F.: Growth estimates in the Hardy-Sobolev space of an annular domain with applications.J. Math. Anal. Appl. 358 (2009), 98-109. Zbl 1176.46029, MR 2527584, 10.1016/j.jmaa.2009.04.040
Reference: [21] Mitrinović, D. S., Pečarić, J. E., Fink, A. M.: Inequalities Involving Functions and Their Integrals and Derivatives.Mathematics and Its Applications: East European Series 53 Kluwer Academic Publishers, Dordrecht (1991). Zbl 0744.26011, MR 1190927
Reference: [22] Niculescu, C. P., Buşe, C.: The Hardy-Landau-Littlewood inequalities with less smoothness.JIPAM, J. Inequal. Pure Appl. Math. (electronic only) 4 (2003), Paper No. 51, 8 pages. Zbl 1059.26010, MR 2044400
Reference: [23] Nirenberg, L.: An extended interpolation inequality.Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 20 (1966), 733-737. Zbl 0163.29905, MR 0208360
Reference: [24] Rudin, W.: Analytic functions of class $H^p$.Trans. Am. Math. Soc. 78 (1955), 46-66. MR 0067993
Reference: [25] Sarason, D.: The $H^p$ Spaces of An Annulus.Memoirs of the American Mathematical Society 56 AMS, Providence (1965). MR 0188824
Reference: [26] Wang, H.-C.: Real Hardy spaces of an annulus.Bull. Aust. Math. Soc. 27 (1983), 91-105. Zbl 0512.42023, MR 0696647, 10.1017/S0004972700011515
.

Files

Files Size Format View
CzechMathJ_64-2014-2_6.pdf 280.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo