Title:
|
Pointwise inequalities of logarithmic type in Hardy-Hölder spaces (English) |
Author:
|
Chaabane, Slim |
Author:
|
Feki, Imed |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
64 |
Issue:
|
2 |
Year:
|
2014 |
Pages:
|
351-363 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We prove some optimal logarithmic estimates in the Hardy space ${H}^{\infty }(G)$ with Hölder regularity, where $G$ is the open unit disk or an annular domain of $\mathbb {C}$. These estimates extend the results established by S. Chaabane and I. Feki in the Hardy-Sobolev space $H^{k,\infty }$ of the unit disk and those of I. Feki in the case of an annular domain. The proofs are based on a variant of Hardy-Landau-Littlewood inequality for Hölder functions. As an application of these estimates, we study the stability of both the Cauchy problem for the Laplace operator and the Robin inverse problem. (English) |
Keyword:
|
Hardy-Sobolev space |
Keyword:
|
Hardy-Landau-Littlewood inequality |
Keyword:
|
Hölder regularity |
Keyword:
|
Cauchy problem |
Keyword:
|
inverse problem |
Keyword:
|
logarithmic estimate |
MSC:
|
30C40 |
MSC:
|
30H05 |
MSC:
|
30H10 |
idZBL:
|
Zbl 06391499 |
idMR:
|
MR3277741 |
DOI:
|
10.1007/s10587-014-0106-9 |
. |
Date available:
|
2014-11-10T09:34:43Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144003 |
. |
Reference:
|
[1] Baratchart, L., Leblond, J.: Harmonic identification and Hardy class trace on an arc of the circle.Optimisation et Contrôle. Proceedings of the Colloquium in Honor of Jean Céa's sixtieth birthday held in Sophia-Antipolis, 1992 J.-A. Désidéri Cépaduès Éditions Toulouse (1993), 17-29 French. Zbl 0922.93012, MR 1284961 |
Reference:
|
[2] Baratchart, L., Leblond, J., Partington, J. R.: Hardy approximation to $L^\infty$ functions on subsets of the circle.Constr. Approx. 12 (1996), 423-435. MR 1405007 |
Reference:
|
[3] Baratchart, L., Zerner, M.: On the recovery of functions from pointwise boundary values in a Hardy-Sobolev class of the disk.J. Comput. Appl. Math 46 (1993), 255-269. MR 1222486, 10.1016/0377-0427(93)90300-Z |
Reference:
|
[4] Brézis, H.: Functional Analysis. Theory and Applications.Collection of Applied Mathematics for the Master's Degree Masson, Paris (1983), French. MR 0697382 |
Reference:
|
[5] Chaabane, S., Feki, I.: Optimal logarithmic estimates in Hardy-Sobolev spaces $H^{k,\infty}$.C. R., Math., Acad. Sci. Paris 347 (2009), 1001-1006. MR 2554565, 10.1016/j.crma.2009.07.018 |
Reference:
|
[6] Chaabane, S., Fellah, I., Jaoua, M., Leblond, J.: Logarithmic stability estimates for a Robin coefficient in two-dimensional Laplace inverse problems.Inverse Probl. 20 (2004), 47-59. Zbl 1055.35135, MR 2044605 |
Reference:
|
[7] Chaabane, S., Ferchichi, J., Kunisch, K.: Differentiability properties of the $L^{1}$-tracking functional and application to the Robin inverse problem.Inverse Probl. 20 (2004), 1083-1097. MR 2087981 |
Reference:
|
[8] Chaabane, S., Jaoua, M.: Identification of Robin coefficients by the means of boundary measurements.Inverse Probl. 15 (1999), 1425-1438. Zbl 0943.35100, MR 1733209 |
Reference:
|
[9] Chaabane, S., Jaoua, M., Leblond, J.: Parameter identification for Laplace equation and approximation in Hardy classes.J. Inverse Ill-Posed Probl. 11 (2003), 33-57. Zbl 1028.35163, MR 1972169, 10.1515/156939403322004928 |
Reference:
|
[10] Chalendar, I., Partington, J. R.: Approximation problems and representations of Hardy spaces in circular domains.Stud. Math. 136 (1999), 255-269. Zbl 0952.30033, MR 1724247 |
Reference:
|
[11] Chevreau, B., Pearcy, C. M., Shields, A. L.: Finitely connected domains $G$, representations of $H^{\infty}(G)$, and invariant subspaces.J. Oper. Theory 6 (1981), 375-405. MR 0643698 |
Reference:
|
[12] Duren, P. L.: Theory of $H^p$ Spaces.Pure and Applied Mathematics 38 Academic Press, New York (1970). MR 0268655 |
Reference:
|
[13] Feki, I.: Estimates in the Hardy-Sobolev space of the annulus and stability result.Czech. Math. J. 63 (2013), 481-495. Zbl 1289.30231, MR 3073973, 10.1007/s10587-013-0032-2 |
Reference:
|
[14] Feki, I., Nfata, H., Wielonsky, F.: Optimal logarithmic estimates in the Hardy-Sobolev space of the disk and stability results.J. Math. Anal. Appl. 395 (2012), 366-375. Zbl 1250.30051, MR 2943628, 10.1016/j.jmaa.2012.05.055 |
Reference:
|
[15] Gagliardo, E.: Proprietà di alcune classi di funzioni più variabili.Ricerche Mat. 7 (1958), 102-137 Italian. MR 0102740 |
Reference:
|
[16] Hardy, G. H., Landau, E., Littlewood, J. E.: Some inequalities satisfied by the integrals or derivatives of real or analytic functions.Math. Z. 39 (1935), 677-695. Zbl 0011.06102, MR 1545530, 10.1007/BF01201386 |
Reference:
|
[17] Kwong, M. K., Zettl, A.: Norm Inequalities for Derivatives and Differences.Lecture Notes in Mathematics 1536 Springer, Berlin (1992). Zbl 0925.26011, MR 1223546, 10.1007/BFb0090864 |
Reference:
|
[18] Leblond, L., Mahjoub, M., Partington, J. R.: Analytic extensions and Cauchy-type inverse problems on annular domains: stability results.J. Inverse Ill-Posed Probl. 14 (2006), 189-204. Zbl 1111.35121, MR 2242304, 10.1515/156939406777571049 |
Reference:
|
[19] Marangunić, L. J., Pečarić, J.: On Landau type inequalities for functions with Hölder continuous derivatives.JIPAM, J. Inequal. Pure Appl. Math. (electronic only) 5 (2004), Paper No. 72, 5 pages. Zbl 1060.26018, MR 2084881 |
Reference:
|
[20] Meftahi, H., Wielonsky, F.: Growth estimates in the Hardy-Sobolev space of an annular domain with applications.J. Math. Anal. Appl. 358 (2009), 98-109. Zbl 1176.46029, MR 2527584, 10.1016/j.jmaa.2009.04.040 |
Reference:
|
[21] Mitrinović, D. S., Pečarić, J. E., Fink, A. M.: Inequalities Involving Functions and Their Integrals and Derivatives.Mathematics and Its Applications: East European Series 53 Kluwer Academic Publishers, Dordrecht (1991). Zbl 0744.26011, MR 1190927 |
Reference:
|
[22] Niculescu, C. P., Buşe, C.: The Hardy-Landau-Littlewood inequalities with less smoothness.JIPAM, J. Inequal. Pure Appl. Math. (electronic only) 4 (2003), Paper No. 51, 8 pages. Zbl 1059.26010, MR 2044400 |
Reference:
|
[23] Nirenberg, L.: An extended interpolation inequality.Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 20 (1966), 733-737. Zbl 0163.29905, MR 0208360 |
Reference:
|
[24] Rudin, W.: Analytic functions of class $H^p$.Trans. Am. Math. Soc. 78 (1955), 46-66. MR 0067993 |
Reference:
|
[25] Sarason, D.: The $H^p$ Spaces of An Annulus.Memoirs of the American Mathematical Society 56 AMS, Providence (1965). MR 0188824 |
Reference:
|
[26] Wang, H.-C.: Real Hardy spaces of an annulus.Bull. Aust. Math. Soc. 27 (1983), 91-105. Zbl 0512.42023, MR 0696647, 10.1017/S0004972700011515 |
. |