Previous |  Up |  Next

Article

Title: Some results on the local cohomology of minimax modules (English)
Author: Abbasi, Ahmad
Author: Roshan-Shekalgourabi, Hajar
Author: Hassanzadeh-Lelekaami, Dawood
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 2
Year: 2014
Pages: 327-333
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a commutative Noetherian ring with identity and $I$ an ideal of $R$. It is shown that, if $M$ is a non-zero minimax $R$-module such that $\dim \mathop {\rm Supp} H^i_I (M) \leq 1$ for all $i$, then the $R$-module $H^i_I(M)$ is $I$-cominimax for all $i$. In fact, $H^i_I(M)$ is $I$-cofinite for all $i\geq 1$. Also, we prove that for a weakly Laskerian $R$-module $M$, if $R$ is local and $t$ is a non-negative integer such that $\dim \mathop {\rm Supp} H^i_I (M)\leq 2$ for all $i<t$, then ${\rm Ext}^j_R (R/I, H^i_I (M))$ and ${\rm Hom}_R(R/I, H^t_I(M))$ are weakly Laskerian for all $i<t$ and all $j \geq 0$. As a consequence, the set of associated primes of $H^i_I (M)$ is finite for all $i\geq 0$, whenever $\dim R/I \leq 2$ and $M$ is weakly Laskerian. (English)
Keyword: local cohomology module
Keyword: Krull dimension
Keyword: minimax module
Keyword: cofinite module
Keyword: weakly Laskerian module
Keyword: associated primes
MSC: 13C05
MSC: 13D45
MSC: 13E10
idZBL: Zbl 06391497
idMR: MR3277739
DOI: 10.1007/s10587-014-0104-y
.
Date available: 2014-11-10T09:31:02Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144001
.
Reference: [1] Azami, J., Naghipour, R., Vakili, B.: Finiteness properties of local cohomology modules for $\mathfrak a$-minimax modules.Proc. Am. Math. Soc. 137 (2009), 439-448. MR 2448562, 10.1090/S0002-9939-08-09530-0
Reference: [2] Bahmanpour, K.: On the category of weakly Laskerian cofinite modules.Math. Scand. 115 (2014), 62-68. MR 3250048, 10.7146/math.scand.a-18002
Reference: [3] Bahmanpour, K., Naghipour, R.: On the cofiniteness of local cohohomology modules.Proc. Am. Math. Soc. 136 (2008), 2359-2363. MR 2390502, 10.1090/S0002-9939-08-09260-5
Reference: [4] Bahmanpour, K., Naghipour, R.: Cofiniteness of local cohomology modules for ideals of small dimension.J. Algebra 321 (2009), 1997-2011. Zbl 1168.13016, MR 2494753, 10.1016/j.jalgebra.2008.12.020
Reference: [5] Brodmann, M. P., Sharp, R. Y.: Local Cohomology: An Algebraic Introduction with Geometric Applications.Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge (1998). Zbl 0903.13006, MR 1613627
Reference: [6] Chiriacescu, G.: Cofiniteness of local cohomology modules over regular local rings.Bull. Lond. Math. Soc. 32 (2000), 1-7. Zbl 1018.13009, MR 1718769, 10.1112/S0024609399006499
Reference: [7] Delfino, D.: On the cofiniteness of local cohomology modules.Math. Proc. Camb. Philos. Soc. 115 (1994), 79-84. Zbl 0806.13005, MR 1253283, 10.1017/S0305004100071929
Reference: [8] Delfino, D., Marley, T.: Cofinite modules and local cohomology.J. Pure Appl. Algebra 121 (1997), 45-52. Zbl 0893.13005, MR 1471123, 10.1016/S0022-4049(96)00044-8
Reference: [9] Divaani-Aazar, K., Mafi, A.: Associated primes of local cohomology modules.Proc. Am. Math. Soc. (electronic) 133 (2005), 655-660. Zbl 1103.13010, MR 2113911, 10.1090/S0002-9939-04-07728-7
Reference: [10] Divaani-Aazar, K., Mafi, A.: Associated primes of local cohomology modules of weakly Laskerian modules.Commun. Algebra 34 (2006), 681-690. Zbl 1097.13021, MR 2211948, 10.1080/00927870500387945
Reference: [11] Enochs, E.: Flat covers and flat cotorsion modules.Proc. Am. Math. Soc. 92 (1984), 179-184. Zbl 0522.13008, MR 0754698, 10.1090/S0002-9939-1984-0754698-X
Reference: [12] Hartshorne, R.: Affine duality and cofiniteness.Invent. Math. 9 (1970), 145-164. Zbl 0196.24301, MR 0257096, 10.1007/BF01404554
Reference: [13] Huneke, C., Koh, J.: Cofiniteness and vanishing of local cohomology modules.Math. Proc. Camb. Philos. Soc. 110 (1991), 421-429. Zbl 0749.13007, MR 1120477, 10.1017/S0305004100070493
Reference: [14] Mafi, A.: A generalization of the finiteness problem in local cohomology modules.Proc. Indian Acad. Sci., Math. Sci. 119 (2009), 159-164. Zbl 1171.13011, MR 2526419, 10.1007/s12044-009-0016-1
Reference: [15] Melkersson, L.: Modules cofinite with respect to an ideal.J. Algebra 285 (2005), 649-668. Zbl 1093.13012, MR 2125457, 10.1016/j.jalgebra.2004.08.037
Reference: [16] Quy, P. H.: On the finiteness of associated primes of local cohomology modules.Proc. Am. Math. Soc. 138 (2010), 1965-1968. Zbl 1190.13010, MR 2596030, 10.1090/S0002-9939-10-10235-4
Reference: [17] Robbins, H. R.: Finiteness of Associated Primes of Local Cohomology Modules.Ph.D. Thesis, University of Michigan (2008). MR 2712251
Reference: [18] Yoshida, K.-I.: Cofiniteness of local cohomology modules for ideals of dimension one.Nagoya Math. J. 147 (1997), 179-191. Zbl 0899.13018, MR 1475172, 10.1017/S0027763000006371
Reference: [19] Zink, T.: Endlichkeitsbedingungen für Moduln über einem Noetherschen Ring.German Math. Nachr. 64 (1974), 239-252. Zbl 0297.13015, MR 0364223, 10.1002/mana.19740640114
Reference: [20] Zöschinger, H.: Minimax modules.German J. Algebra 102 (1986), 1-32. Zbl 0593.13012, MR 0853228, 10.1016/0021-8693(86)90125-0
Reference: [21] Zöschinger, H.: On the maximality condition for radically full submodules.German Hokkaido Math. J. 17 (1988), 101-116. Zbl 0653.13011, MR 0928469
.

Files

Files Size Format View
CzechMathJ_64-2014-2_4.pdf 238.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo