Previous |  Up |  Next

Article

Title: Commutators of sublinear operators generated by Calderón-Zygmund operator on generalized weighted Morrey spaces (English)
Author: Guliyev, Vagif Sabir
Author: Karaman, Turhan
Author: Mustafayev, Rza Chingiz
Author: Şerbetçi, Ayhan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 2
Year: 2014
Pages: 365-385
Summary lang: English
.
Category: math
.
Summary: In this paper, the boundedness of a large class of sublinear commutator operators $T_{b}$ generated by a Calderón-Zygmund type operator on a generalized weighted Morrey spaces $M_{p,\varphi }(w)$ with the weight function $w$ belonging to Muckenhoupt's class $A_{p}$ is studied. When $1<p<\infty $ and $b \in {\rm BMO}$, sufficient conditions on the pair $(\varphi _1,\varphi _2)$ which ensure the boundedness of the operator $T_{b}$ from $M_{p,\varphi _1}(w)$ to $M_{p,\varphi _2}(w)$ are found. In all cases the conditions for the boundedness of $T_{b}$ are given in terms of Zygmund-type integral inequalities on $(\varphi _1,\varphi _2)$, which do not require any assumption on monotonicity of $\varphi _1(x,r)$, $\varphi _2(x,r)$ in $r$. Then these results are applied to several particular operators such as the pseudo-differential operators, Littlewood-Paley operator, Marcinkiewicz operator and Bochner-Riesz operator. (English)
Keyword: generalized weighted Morrey space
Keyword: sublinear operator
Keyword: commutator
Keyword: BMO space
Keyword: maximal operator
Keyword: Calderón-Zygmund operator
MSC: 42B20
MSC: 42B25
MSC: 42B35
idZBL: Zbl 06391500
idMR: MR3277742
DOI: 10.1007/s10587-014-0107-8
.
Date available: 2014-11-10T09:39:06Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144004
.
Reference: [1] Burenkov, V. I., Gogatishvili, A., Guliyev, V. S., Mustafayev, R. C.: Boundedness of the fractional maximal operator in local Morrey-type spaces.Complex Var. Elliptic Equ. 55 739-758 (2010). Zbl 1207.42015, MR 2674862
Reference: [2] Burenkov, V. I., Guliyev, H. V., Guliyev, V. S.: Necessary and sufficient conditions for the boundedness of fractional maximal operators in local Morrey-type spaces.J. Comput. Appl. Math. 208 280-301 (2007). Zbl 1134.46014, MR 2347750, 10.1016/j.cam.2006.10.085
Reference: [3] Burenkov, V. I., Guliyev, V. S.: Necessary and sufficient conditions for the boundedness of the Riesz potential in local Morrey-type spaces.Potential Anal. 30 211-249 (2009). Zbl 1171.42003, MR 2480959, 10.1007/s11118-008-9113-5
Reference: [4] Chiarenza, F., Frasca, M., Longo, P.: Interior $W^{2,p}$ estimates for non-divergence elliptic equations with discontinuous coefficients.Ric. Mat. 40 149-168 (1991). MR 1191890
Reference: [5] Chiarenza, F., Frasca, M., Longo, P.: $W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients.Trans. Am. Math. Soc. 336 841-853 (1993). MR 1088476
Reference: [6] Coifman, R. R., Meyer, Y.: Beyond pseudodifferential operators.Asterisque 57 Société Mathématique de France, Paris (1978), French. MR 0518170
Reference: [7] Coifman, R. R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables.Ann. Math. 103 611-635 (1976). Zbl 0326.32011, MR 0412721, 10.2307/1970954
Reference: [8] Fazio, G. Di, Ragusa, M. A.: Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients.J. Funct. Anal. 112 241-256 (1993). Zbl 0822.35036, MR 1213138, 10.1006/jfan.1993.1032
Reference: [9] Ding, Y., Yang, D., Zhou, Z.: Boundedness of sublinear operators and commutators on $L^{p,\omega}(\mathbb{R}^n)$.Yokohama Math. J. 46 15-27 (1998). MR 1670757
Reference: [10] Garcí{a}-Cuerva, J., Francia, J. L. Rubio de: Weighted Norm Inequalities and Related Topics.North-Holland Mathematics Studies 116. Mathematical Notes 104 North-Holland, Amsterdam (1985). MR 0807149
Reference: [11] Grafakos, L.: Classical and Modern Fourier Analysis.Pearson/Prentice Hall Upper Saddle River (2004). Zbl 1148.42001, MR 2449250
Reference: [12] Guliyev, V. S.: Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces.J. Inequal. Appl. 2009 Article ID 503948, 20 pages (2009). Zbl 1193.42082, MR 2579556
Reference: [13] Guliyev, V. S.: Function Spaces, Integral Operators and Two Weighted Inequalities on Homogeneous Groups.Some Applications Baku (1996).
Reference: [14] Guliyev, V. S.: Integral Operators on Function Spaces on the Homogeneous Groups and on Domains in $\mathbb{R}^n$. Doctoral Degree Dissertation.Mat. Inst. Steklov Moskva (1994), Russian.
Reference: [15] Guliyev, V. S., Aliyev, S. S., Karaman, T.: Boundedness of a class of sublinear operators and their commutators on generalized Morrey spaces.Abstr. Appl. Anal. 2011 Article ID 356041, 18 pages (2011). Zbl 1228.42017, MR 2819766
Reference: [16] Guliyev, V. S., Hasanov, J. J., Samko, S. G.: Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces.Math. Scand. 107 285-304 (2010). Zbl 1213.42077, MR 2735097, 10.7146/math.scand.a-15156
Reference: [17] Hörmander, L.: Pseudo-differential operators and hypoelliptic equations.Proc. Sympos. Pure Math. 10, Chicago, Ill., 1966 American Mathematical Society Providence 138-183 (1967). Zbl 0167.09603, MR 0383152
Reference: [18] Karaman, T., Guliyev, V. S., Serbetci, A.: Boundedness of sublinear operators generated by Calderón-Zygmund operators on generalized weighted Morrey spaces.An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) LX f.1, 18 pages (2014). MR 3252469
Reference: [19] Komori, Y., Shirai, S.: Weighted Morrey spaces and a singular integral operator.Math. Nachr. 282 219-231 (2009). Zbl 1160.42008, MR 2493512, 10.1002/mana.200610733
Reference: [20] Lin, Y.: Strongly singular Calderón-Zygmund operator and commutator on Morrey type spaces.Acta Math. Sin., Engl. Ser. 23 2097-2110 (2007). Zbl 1131.42014, MR 2359125, 10.1007/s10114-007-0974-0
Reference: [21] Lin, Y., Lu, S.: Strongly singular Calderón-Zygmund operators and their commutators.Jordan Journal of Mathematics and Statistics 1 31-49 (2008). Zbl 1279.42018, MR 2261876
Reference: [22] Liu, L.: Weighted weak type estimates for commutators of Littlewood-Paley operator.Jap. J. Math., New Ser. 29 1-13 (2003). Zbl 1046.42013, MR 1986863, 10.4099/math1924.29.1
Reference: [23] Liu, L., Lu, S.: Weighted weak type inequalities for maximal commutators of BochnerRiesz operator.Hokkaido Math. J. 32 85-99 (2003). MR 1962028, 10.14492/hokmj/1350652427
Reference: [24] Liu, Y., Chen, D.: The boundedness of maximal Bochner-Riesz operator and maximal commutator on Morrey type spaces.Anal. Theory. Appl. 24 321-329 (2008). Zbl 1199.42105, MR 2471861, 10.1007/s10496-008-0321-z
Reference: [25] Lu, S., Ding, Y., Yan, D.: Singular Integrals and Related Topics.World Scientific Publishing Hackensack (2007). Zbl 1124.42011, MR 2354214
Reference: [26] Lu, G., Lu, S., Yang, D.: Singular integrals and commutators on homogeneous groups.Anal. Math. 28 103-134 (2002). Zbl 1026.43007, MR 1918254, 10.1023/A:1016568918973
Reference: [27] Miller, N.: Weighted Sobolev spaces and pseudodifferential operators with smooth symbols.Trans. Am. Math. Soc. 269 91-109 (1982). Zbl 0482.35082, MR 0637030, 10.1090/S0002-9947-1982-0637030-4
Reference: [28] Mizuhara, T.: Boundedness of some classical operators on generalized Morrey spaces.Harmonic Analysis. Proceedings of a conference in Sendai, Japan, 1990 S. Igari Springer Tokyo 183-189 (1991). Zbl 0771.42007, MR 1261439
Reference: [29] Jr., C. B. Morrey: On the solutions of quasi-linear elliptic partial differential equations.Trans. Am. Math. Soc. 43 126-166 (1938). Zbl 0018.40501, MR 1501936, 10.1090/S0002-9947-1938-1501936-8
Reference: [30] Muckenhoupt, B., Wheeden, R. L.: Weighted bounded mean oscillation and the Hilbert transform.Stud. Math. 54 221-237 (1976). Zbl 0318.26014, MR 0399741, 10.4064/sm-54-3-221-237
Reference: [31] Nakai, E.: Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces.Math. Nachr. 166 95-103 (1994). Zbl 0837.42008, MR 1273325, 10.1002/mana.19941660108
Reference: [32] Peetre, J.: On the theory of $L_{p,\lambda}$ spaces.J. Funct. Anal. 4 71-87 (1969). MR 0241965, 10.1016/0022-1236(69)90022-6
Reference: [33] Polidoro, S., Ragusa, M. A.: Hölder regularity for solutions of ultraparabolic equations in divergence form.Potential Anal. 14 341-350 (2001). Zbl 0980.35081, MR 1825690, 10.1023/A:1011261019736
Reference: [34] Sawano, Y.: Generalized Morrey spaces for non-doubling measures.NoDEA, Nonlinear Differ. Equ. Appl. 15 413-425 (2008). Zbl 1173.42317, MR 2465971, 10.1007/s00030-008-6032-5
Reference: [35] Shi, X., Sun, Q.: Weighted norm inequalities for Bochner-Riesz operators and singular integral operators.Proc. Am. Math. Soc. 116 665-673 (1992). Zbl 0786.42006, MR 1136237, 10.1090/S0002-9939-1992-1136237-1
Reference: [36] Sjölin, P.: Convergence almost everywhere of certain singular integrals and multiple Fourier series.Ark. Mat. 9 (1971), 65-90. Zbl 0212.41703, MR 0336222, 10.1007/BF02383638
Reference: [37] Soria, F., Weiss, G.: A remark on singular integrals and power weights.Indiana Univ. Math. J. 43 187-204 (1994). Zbl 0803.42004, MR 1275458, 10.1512/iumj.1994.43.43009
Reference: [38] Stein, E. M.: Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals. With the assistance of Timothy S. Murphy.Princeton Mathematical Series 43. Monographs in Harmonic Analysis III Princeton University Press, Princeton (1993). Zbl 0821.42001, MR 1232192
Reference: [39] Stein, E. M.: On the functions of Littlewood-Paley, Lusin and Marcinkiewicz.Trans. Am. Math. Soc. 88 430-466 (1958). MR 0112932, 10.1090/S0002-9947-1958-0112932-2
Reference: [40] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions.Princeton Mathematical Series 30 Princeton University Press, Princeton (1970). Zbl 0207.13501, MR 0290095
Reference: [41] Taylor, M. E.: Pseudodifferential Operators and Nonlinear PDE.Progress in Mathematics 100 Birkhäuser, Boston (1991). Zbl 0746.35062, MR 1121019
Reference: [42] Torchinsky, A.: Real-Variable Methods in Harmonic Analysis.Pure and Applied Mathematics 123 Academic Press, Orlando (1986). Zbl 0621.42001, MR 0869816
Reference: [43] Torchinsky, A., Wang, S.: A note on the Marcinkiewicz integral.Colloq. Math. 60/61 235-243 (1990). Zbl 0731.42019, MR 1096373, 10.4064/cm-60-61-1-235-243
Reference: [44] Vargas, A. M.: Weighted weak type $(1,1)$ bounds for rough operators.J. Lond. Math. Soc., II. Ser. 54 297-310 (1996). Zbl 0884.42011, MR 1405057, 10.1112/jlms/54.2.297
.

Files

Files Size Format View
CzechMathJ_64-2014-2_7.pdf 329.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo