Title:
|
Commutators of sublinear operators generated by Calderón-Zygmund operator on generalized weighted Morrey spaces (English) |
Author:
|
Guliyev, Vagif Sabir |
Author:
|
Karaman, Turhan |
Author:
|
Mustafayev, Rza Chingiz |
Author:
|
Şerbetçi, Ayhan |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
64 |
Issue:
|
2 |
Year:
|
2014 |
Pages:
|
365-385 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, the boundedness of a large class of sublinear commutator operators $T_{b}$ generated by a Calderón-Zygmund type operator on a generalized weighted Morrey spaces $M_{p,\varphi }(w)$ with the weight function $w$ belonging to Muckenhoupt's class $A_{p}$ is studied. When $1<p<\infty $ and $b \in {\rm BMO}$, sufficient conditions on the pair $(\varphi _1,\varphi _2)$ which ensure the boundedness of the operator $T_{b}$ from $M_{p,\varphi _1}(w)$ to $M_{p,\varphi _2}(w)$ are found. In all cases the conditions for the boundedness of $T_{b}$ are given in terms of Zygmund-type integral inequalities on $(\varphi _1,\varphi _2)$, which do not require any assumption on monotonicity of $\varphi _1(x,r)$, $\varphi _2(x,r)$ in $r$. Then these results are applied to several particular operators such as the pseudo-differential operators, Littlewood-Paley operator, Marcinkiewicz operator and Bochner-Riesz operator. (English) |
Keyword:
|
generalized weighted Morrey space |
Keyword:
|
sublinear operator |
Keyword:
|
commutator |
Keyword:
|
BMO space |
Keyword:
|
maximal operator |
Keyword:
|
Calderón-Zygmund operator |
MSC:
|
42B20 |
MSC:
|
42B25 |
MSC:
|
42B35 |
idZBL:
|
Zbl 06391500 |
idMR:
|
MR3277742 |
DOI:
|
10.1007/s10587-014-0107-8 |
. |
Date available:
|
2014-11-10T09:39:06Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144004 |
. |
Reference:
|
[1] Burenkov, V. I., Gogatishvili, A., Guliyev, V. S., Mustafayev, R. C.: Boundedness of the fractional maximal operator in local Morrey-type spaces.Complex Var. Elliptic Equ. 55 739-758 (2010). Zbl 1207.42015, MR 2674862 |
Reference:
|
[2] Burenkov, V. I., Guliyev, H. V., Guliyev, V. S.: Necessary and sufficient conditions for the boundedness of fractional maximal operators in local Morrey-type spaces.J. Comput. Appl. Math. 208 280-301 (2007). Zbl 1134.46014, MR 2347750, 10.1016/j.cam.2006.10.085 |
Reference:
|
[3] Burenkov, V. I., Guliyev, V. S.: Necessary and sufficient conditions for the boundedness of the Riesz potential in local Morrey-type spaces.Potential Anal. 30 211-249 (2009). Zbl 1171.42003, MR 2480959, 10.1007/s11118-008-9113-5 |
Reference:
|
[4] Chiarenza, F., Frasca, M., Longo, P.: Interior $W^{2,p}$ estimates for non-divergence elliptic equations with discontinuous coefficients.Ric. Mat. 40 149-168 (1991). MR 1191890 |
Reference:
|
[5] Chiarenza, F., Frasca, M., Longo, P.: $W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients.Trans. Am. Math. Soc. 336 841-853 (1993). MR 1088476 |
Reference:
|
[6] Coifman, R. R., Meyer, Y.: Beyond pseudodifferential operators.Asterisque 57 Société Mathématique de France, Paris (1978), French. MR 0518170 |
Reference:
|
[7] Coifman, R. R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables.Ann. Math. 103 611-635 (1976). Zbl 0326.32011, MR 0412721, 10.2307/1970954 |
Reference:
|
[8] Fazio, G. Di, Ragusa, M. A.: Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients.J. Funct. Anal. 112 241-256 (1993). Zbl 0822.35036, MR 1213138, 10.1006/jfan.1993.1032 |
Reference:
|
[9] Ding, Y., Yang, D., Zhou, Z.: Boundedness of sublinear operators and commutators on $L^{p,\omega}(\mathbb{R}^n)$.Yokohama Math. J. 46 15-27 (1998). MR 1670757 |
Reference:
|
[10] Garcí{a}-Cuerva, J., Francia, J. L. Rubio de: Weighted Norm Inequalities and Related Topics.North-Holland Mathematics Studies 116. Mathematical Notes 104 North-Holland, Amsterdam (1985). MR 0807149 |
Reference:
|
[11] Grafakos, L.: Classical and Modern Fourier Analysis.Pearson/Prentice Hall Upper Saddle River (2004). Zbl 1148.42001, MR 2449250 |
Reference:
|
[12] Guliyev, V. S.: Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces.J. Inequal. Appl. 2009 Article ID 503948, 20 pages (2009). Zbl 1193.42082, MR 2579556 |
Reference:
|
[13] Guliyev, V. S.: Function Spaces, Integral Operators and Two Weighted Inequalities on Homogeneous Groups.Some Applications Baku (1996). |
Reference:
|
[14] Guliyev, V. S.: Integral Operators on Function Spaces on the Homogeneous Groups and on Domains in $\mathbb{R}^n$. Doctoral Degree Dissertation.Mat. Inst. Steklov Moskva (1994), Russian. |
Reference:
|
[15] Guliyev, V. S., Aliyev, S. S., Karaman, T.: Boundedness of a class of sublinear operators and their commutators on generalized Morrey spaces.Abstr. Appl. Anal. 2011 Article ID 356041, 18 pages (2011). Zbl 1228.42017, MR 2819766 |
Reference:
|
[16] Guliyev, V. S., Hasanov, J. J., Samko, S. G.: Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces.Math. Scand. 107 285-304 (2010). Zbl 1213.42077, MR 2735097, 10.7146/math.scand.a-15156 |
Reference:
|
[17] Hörmander, L.: Pseudo-differential operators and hypoelliptic equations.Proc. Sympos. Pure Math. 10, Chicago, Ill., 1966 American Mathematical Society Providence 138-183 (1967). Zbl 0167.09603, MR 0383152 |
Reference:
|
[18] Karaman, T., Guliyev, V. S., Serbetci, A.: Boundedness of sublinear operators generated by Calderón-Zygmund operators on generalized weighted Morrey spaces.An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) LX f.1, 18 pages (2014). MR 3252469 |
Reference:
|
[19] Komori, Y., Shirai, S.: Weighted Morrey spaces and a singular integral operator.Math. Nachr. 282 219-231 (2009). Zbl 1160.42008, MR 2493512, 10.1002/mana.200610733 |
Reference:
|
[20] Lin, Y.: Strongly singular Calderón-Zygmund operator and commutator on Morrey type spaces.Acta Math. Sin., Engl. Ser. 23 2097-2110 (2007). Zbl 1131.42014, MR 2359125, 10.1007/s10114-007-0974-0 |
Reference:
|
[21] Lin, Y., Lu, S.: Strongly singular Calderón-Zygmund operators and their commutators.Jordan Journal of Mathematics and Statistics 1 31-49 (2008). Zbl 1279.42018, MR 2261876 |
Reference:
|
[22] Liu, L.: Weighted weak type estimates for commutators of Littlewood-Paley operator.Jap. J. Math., New Ser. 29 1-13 (2003). Zbl 1046.42013, MR 1986863, 10.4099/math1924.29.1 |
Reference:
|
[23] Liu, L., Lu, S.: Weighted weak type inequalities for maximal commutators of BochnerRiesz operator.Hokkaido Math. J. 32 85-99 (2003). MR 1962028, 10.14492/hokmj/1350652427 |
Reference:
|
[24] Liu, Y., Chen, D.: The boundedness of maximal Bochner-Riesz operator and maximal commutator on Morrey type spaces.Anal. Theory. Appl. 24 321-329 (2008). Zbl 1199.42105, MR 2471861, 10.1007/s10496-008-0321-z |
Reference:
|
[25] Lu, S., Ding, Y., Yan, D.: Singular Integrals and Related Topics.World Scientific Publishing Hackensack (2007). Zbl 1124.42011, MR 2354214 |
Reference:
|
[26] Lu, G., Lu, S., Yang, D.: Singular integrals and commutators on homogeneous groups.Anal. Math. 28 103-134 (2002). Zbl 1026.43007, MR 1918254, 10.1023/A:1016568918973 |
Reference:
|
[27] Miller, N.: Weighted Sobolev spaces and pseudodifferential operators with smooth symbols.Trans. Am. Math. Soc. 269 91-109 (1982). Zbl 0482.35082, MR 0637030, 10.1090/S0002-9947-1982-0637030-4 |
Reference:
|
[28] Mizuhara, T.: Boundedness of some classical operators on generalized Morrey spaces.Harmonic Analysis. Proceedings of a conference in Sendai, Japan, 1990 S. Igari Springer Tokyo 183-189 (1991). Zbl 0771.42007, MR 1261439 |
Reference:
|
[29] Jr., C. B. Morrey: On the solutions of quasi-linear elliptic partial differential equations.Trans. Am. Math. Soc. 43 126-166 (1938). Zbl 0018.40501, MR 1501936, 10.1090/S0002-9947-1938-1501936-8 |
Reference:
|
[30] Muckenhoupt, B., Wheeden, R. L.: Weighted bounded mean oscillation and the Hilbert transform.Stud. Math. 54 221-237 (1976). Zbl 0318.26014, MR 0399741, 10.4064/sm-54-3-221-237 |
Reference:
|
[31] Nakai, E.: Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces.Math. Nachr. 166 95-103 (1994). Zbl 0837.42008, MR 1273325, 10.1002/mana.19941660108 |
Reference:
|
[32] Peetre, J.: On the theory of $L_{p,\lambda}$ spaces.J. Funct. Anal. 4 71-87 (1969). MR 0241965, 10.1016/0022-1236(69)90022-6 |
Reference:
|
[33] Polidoro, S., Ragusa, M. A.: Hölder regularity for solutions of ultraparabolic equations in divergence form.Potential Anal. 14 341-350 (2001). Zbl 0980.35081, MR 1825690, 10.1023/A:1011261019736 |
Reference:
|
[34] Sawano, Y.: Generalized Morrey spaces for non-doubling measures.NoDEA, Nonlinear Differ. Equ. Appl. 15 413-425 (2008). Zbl 1173.42317, MR 2465971, 10.1007/s00030-008-6032-5 |
Reference:
|
[35] Shi, X., Sun, Q.: Weighted norm inequalities for Bochner-Riesz operators and singular integral operators.Proc. Am. Math. Soc. 116 665-673 (1992). Zbl 0786.42006, MR 1136237, 10.1090/S0002-9939-1992-1136237-1 |
Reference:
|
[36] Sjölin, P.: Convergence almost everywhere of certain singular integrals and multiple Fourier series.Ark. Mat. 9 (1971), 65-90. Zbl 0212.41703, MR 0336222, 10.1007/BF02383638 |
Reference:
|
[37] Soria, F., Weiss, G.: A remark on singular integrals and power weights.Indiana Univ. Math. J. 43 187-204 (1994). Zbl 0803.42004, MR 1275458, 10.1512/iumj.1994.43.43009 |
Reference:
|
[38] Stein, E. M.: Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals. With the assistance of Timothy S. Murphy.Princeton Mathematical Series 43. Monographs in Harmonic Analysis III Princeton University Press, Princeton (1993). Zbl 0821.42001, MR 1232192 |
Reference:
|
[39] Stein, E. M.: On the functions of Littlewood-Paley, Lusin and Marcinkiewicz.Trans. Am. Math. Soc. 88 430-466 (1958). MR 0112932, 10.1090/S0002-9947-1958-0112932-2 |
Reference:
|
[40] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions.Princeton Mathematical Series 30 Princeton University Press, Princeton (1970). Zbl 0207.13501, MR 0290095 |
Reference:
|
[41] Taylor, M. E.: Pseudodifferential Operators and Nonlinear PDE.Progress in Mathematics 100 Birkhäuser, Boston (1991). Zbl 0746.35062, MR 1121019 |
Reference:
|
[42] Torchinsky, A.: Real-Variable Methods in Harmonic Analysis.Pure and Applied Mathematics 123 Academic Press, Orlando (1986). Zbl 0621.42001, MR 0869816 |
Reference:
|
[43] Torchinsky, A., Wang, S.: A note on the Marcinkiewicz integral.Colloq. Math. 60/61 235-243 (1990). Zbl 0731.42019, MR 1096373, 10.4064/cm-60-61-1-235-243 |
Reference:
|
[44] Vargas, A. M.: Weighted weak type $(1,1)$ bounds for rough operators.J. Lond. Math. Soc., II. Ser. 54 297-310 (1996). Zbl 0884.42011, MR 1405057, 10.1112/jlms/54.2.297 |
. |