Previous |  Up |  Next

Article

Title: The weak McShane integral (English)
Author: Saadoune, Mohammed
Author: Sayyad, Redouane
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 2
Year: 2014
Pages: 387-418
Summary lang: English
.
Category: math
.
Summary: We present a weaker version of the Fremlin generalized McShane integral (1995) for functions defined on a $\sigma $-finite outer regular quasi Radon measure space $(S,\Sigma ,\mathcal {T},\mu )$ into a Banach space $X$ and study its relation with the Pettis integral. In accordance with this new method of integration, the resulting integral can be expressed as a limit of McShane sums with respect to the weak topology. It is shown that a function $f$ from $S$ into $X$ is weakly McShane integrable on each measurable subset of $S$ if and only if it is Pettis and weakly McShane integrable on $S$. On the other hand, we prove that if an $X$-valued function is weakly McShane integrable on $S$, then it is Pettis integrable on each member of an increasing sequence $(S_\ell )_{\ell \geq 1}$ of measurable sets of finite measure with union $S$. For weakly sequentially complete spaces or for spaces that do not contain a copy of $c_0$, a weakly McShane integrable function on $S$ is always Pettis integrable. A class of functions that are weakly McShane integrable on $S$ but not Pettis integrable is included. (English)
Keyword: Pettis integral
Keyword: McShane integral
Keyword: weak McShane integral
Keyword: uniform integrability
MSC: 26A39
MSC: 26E20
MSC: 28B05
MSC: 46G10
idZBL: Zbl 06391501
idMR: MR3277743
DOI: 10.1007/s10587-014-0108-7
.
Date available: 2014-11-10T09:40:55Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144005
.
Reference: [1] Aizpuru, A., Pérez-Fernández, F. J.: Characterizations of series in Banach spaces.Acta Math. Univ. Comen., New Ser. 68 (1999), 337-344. Zbl 0952.46009, MR 1757800
Reference: [2] Castaing, C.: Weak compactness and convergence in Bochner and Pettis integration.Vietnam J. Math. 24 (1996), 241-286. MR 2010821
Reference: [3] Deville, R., Rodríguez, J.: Integration in Hilbert generated Banach spaces.Isr. J. Math. 177 (2010), 285-306. MR 2684422, 10.1007/s11856-010-0047-4
Reference: [4] Diestel, J., Jr., J. J. Uhl: Vector Measures.Mathematical Surveys 15 AMS, Providence, R.I. (1977). Zbl 0369.46039, MR 0453964
Reference: [5] Piazza, L. Di, Preiss, D.: When do McShane and Pettis integrals coincide? Ill.J. Math. 47 (2003), 1177-1187. MR 2036997, 10.1215/ijm/1258138098
Reference: [6] Fabian, M., Godefroy, G., Hájek, P., Zizler, V.: Hilbert-generated spaces.J. Funct. Anal. 200 (2003), 301-323. Zbl 1039.46015, MR 1979014, 10.1016/S0022-1236(03)00044-2
Reference: [7] Fremlin, D. H.: The generalized McShane integral.Ill. J. Math. 39 (1995), 39-67. Zbl 0810.28006, MR 1299648, 10.1215/ijm/1255986628
Reference: [8] Fremlin, D. H.: Measure Theory. Vol. 2.Broad Foundations Corrected second printing of the 2001 original Torres Fremlin, Colchester (2003). MR 2462280
Reference: [9] Fremlin, D. H.: Measure theory. Vol. 4.Topological Measure Spaces Part I, II. Corrected second printing of the 2003 original Torres Fremlin, Colchester (2006). Zbl 1166.28001, MR 2462372
Reference: [10] Fremlin, D. H., Mendoza, J.: On the integration of vector-valued functions.Ill. J. Math. 38 (1994), 127-147. Zbl 0790.28004, MR 1245838, 10.1215/ijm/1255986891
Reference: [11] Geitz, R. F.: Pettis integration.Proc. Am. Math. Soc. 82 (1981), 81-86. Zbl 0506.28007, MR 0603606, 10.1090/S0002-9939-1981-0603606-8
Reference: [12] Gordon, R. A.: The McShane integral of Banach-valued functions.Ill. J. Math. 34 (1990), 557-567. Zbl 0685.28003, MR 1053562, 10.1215/ijm/1255988170
Reference: [13] Musiał\kern.5pt, K.: Vitali and Lebesgue convergence theorems for Pettis integral in locally convex spaces.Atti Semin. Math. Fis. Univ. Modena 35 (1987), 159-165. MR 0922998
Reference: [14] Rodríguez, J.: On the equivalence of McShane and Pettis integrability in non-separable Banach spaces.J. Math. Anal. Appl. 341 (2008), 80-90. Zbl 1138.28003, MR 2394066, 10.1016/j.jmaa.2007.10.017
Reference: [15] Saadoune, M., Sayyad, R.: From scalar McShane integrability to Pettis integrability.Real Anal. Exchange 38 (2012-2013), 445-466. MR 3261889
Reference: [16] Schwabik, Š., Ye, G.: Topics in Banach Space Integration.Series in Real Analysis 10 World Scientific, Hackensack (2005). Zbl 1088.28008, MR 2167754
Reference: [17] Ye, G., Schwabik, Š.: The McShane and the weak McShane integrals of Banach space-valued functions defined on $\Bbb R^m$.Math. Notes, Miskolc 2 (2001), 127-136. Zbl 0993.28005, MR 1885920, 10.18514/MMN.2001.43
.

Files

Files Size Format View
CzechMathJ_64-2014-2_8.pdf 389.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo