Title:
|
The weak McShane integral (English) |
Author:
|
Saadoune, Mohammed |
Author:
|
Sayyad, Redouane |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
64 |
Issue:
|
2 |
Year:
|
2014 |
Pages:
|
387-418 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We present a weaker version of the Fremlin generalized McShane integral (1995) for functions defined on a $\sigma $-finite outer regular quasi Radon measure space $(S,\Sigma ,\mathcal {T},\mu )$ into a Banach space $X$ and study its relation with the Pettis integral. In accordance with this new method of integration, the resulting integral can be expressed as a limit of McShane sums with respect to the weak topology. It is shown that a function $f$ from $S$ into $X$ is weakly McShane integrable on each measurable subset of $S$ if and only if it is Pettis and weakly McShane integrable on $S$. On the other hand, we prove that if an $X$-valued function is weakly McShane integrable on $S$, then it is Pettis integrable on each member of an increasing sequence $(S_\ell )_{\ell \geq 1}$ of measurable sets of finite measure with union $S$. For weakly sequentially complete spaces or for spaces that do not contain a copy of $c_0$, a weakly McShane integrable function on $S$ is always Pettis integrable. A class of functions that are weakly McShane integrable on $S$ but not Pettis integrable is included. (English) |
Keyword:
|
Pettis integral |
Keyword:
|
McShane integral |
Keyword:
|
weak McShane integral |
Keyword:
|
uniform integrability |
MSC:
|
26A39 |
MSC:
|
26E20 |
MSC:
|
28B05 |
MSC:
|
46G10 |
idZBL:
|
Zbl 06391501 |
idMR:
|
MR3277743 |
DOI:
|
10.1007/s10587-014-0108-7 |
. |
Date available:
|
2014-11-10T09:40:55Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144005 |
. |
Reference:
|
[1] Aizpuru, A., Pérez-Fernández, F. J.: Characterizations of series in Banach spaces.Acta Math. Univ. Comen., New Ser. 68 (1999), 337-344. Zbl 0952.46009, MR 1757800 |
Reference:
|
[2] Castaing, C.: Weak compactness and convergence in Bochner and Pettis integration.Vietnam J. Math. 24 (1996), 241-286. MR 2010821 |
Reference:
|
[3] Deville, R., Rodríguez, J.: Integration in Hilbert generated Banach spaces.Isr. J. Math. 177 (2010), 285-306. MR 2684422, 10.1007/s11856-010-0047-4 |
Reference:
|
[4] Diestel, J., Jr., J. J. Uhl: Vector Measures.Mathematical Surveys 15 AMS, Providence, R.I. (1977). Zbl 0369.46039, MR 0453964 |
Reference:
|
[5] Piazza, L. Di, Preiss, D.: When do McShane and Pettis integrals coincide? Ill.J. Math. 47 (2003), 1177-1187. MR 2036997, 10.1215/ijm/1258138098 |
Reference:
|
[6] Fabian, M., Godefroy, G., Hájek, P., Zizler, V.: Hilbert-generated spaces.J. Funct. Anal. 200 (2003), 301-323. Zbl 1039.46015, MR 1979014, 10.1016/S0022-1236(03)00044-2 |
Reference:
|
[7] Fremlin, D. H.: The generalized McShane integral.Ill. J. Math. 39 (1995), 39-67. Zbl 0810.28006, MR 1299648, 10.1215/ijm/1255986628 |
Reference:
|
[8] Fremlin, D. H.: Measure Theory. Vol. 2.Broad Foundations Corrected second printing of the 2001 original Torres Fremlin, Colchester (2003). MR 2462280 |
Reference:
|
[9] Fremlin, D. H.: Measure theory. Vol. 4.Topological Measure Spaces Part I, II. Corrected second printing of the 2003 original Torres Fremlin, Colchester (2006). Zbl 1166.28001, MR 2462372 |
Reference:
|
[10] Fremlin, D. H., Mendoza, J.: On the integration of vector-valued functions.Ill. J. Math. 38 (1994), 127-147. Zbl 0790.28004, MR 1245838, 10.1215/ijm/1255986891 |
Reference:
|
[11] Geitz, R. F.: Pettis integration.Proc. Am. Math. Soc. 82 (1981), 81-86. Zbl 0506.28007, MR 0603606, 10.1090/S0002-9939-1981-0603606-8 |
Reference:
|
[12] Gordon, R. A.: The McShane integral of Banach-valued functions.Ill. J. Math. 34 (1990), 557-567. Zbl 0685.28003, MR 1053562, 10.1215/ijm/1255988170 |
Reference:
|
[13] Musiał\kern.5pt, K.: Vitali and Lebesgue convergence theorems for Pettis integral in locally convex spaces.Atti Semin. Math. Fis. Univ. Modena 35 (1987), 159-165. MR 0922998 |
Reference:
|
[14] Rodríguez, J.: On the equivalence of McShane and Pettis integrability in non-separable Banach spaces.J. Math. Anal. Appl. 341 (2008), 80-90. Zbl 1138.28003, MR 2394066, 10.1016/j.jmaa.2007.10.017 |
Reference:
|
[15] Saadoune, M., Sayyad, R.: From scalar McShane integrability to Pettis integrability.Real Anal. Exchange 38 (2012-2013), 445-466. MR 3261889 |
Reference:
|
[16] Schwabik, Š., Ye, G.: Topics in Banach Space Integration.Series in Real Analysis 10 World Scientific, Hackensack (2005). Zbl 1088.28008, MR 2167754 |
Reference:
|
[17] Ye, G., Schwabik, Š.: The McShane and the weak McShane integrals of Banach space-valued functions defined on $\Bbb R^m$.Math. Notes, Miskolc 2 (2001), 127-136. Zbl 0993.28005, MR 1885920, 10.18514/MMN.2001.43 |
. |