Previous |  Up |  Next

Article

Title: Classifying bicrossed products of two Sweedler's Hopf algebras (English)
Author: Bontea, Costel-Gabriel
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 2
Year: 2014
Pages: 419-431
Summary lang: English
.
Category: math
.
Summary: We continue the study started recently by Agore, Bontea and Militaru in ``Classifying bicrossed products of Hopf algebras'' (2014), by describing and classifying all Hopf algebras $E$ that factorize through two Sweedler's Hopf algebras. Equivalently, we classify all bicrossed products $H_4 \bowtie H_4$. There are three steps in our approach. First, we explicitly describe the set of all matched pairs $(H_4, H_4, \triangleright , \triangleleft )$ by proving that, with the exception of the trivial pair, this set is parameterized by the ground field $k$. Then, for any $\lambda \in k$, we describe by generators and relations the associated bicrossed product, $\mathcal {H}_{16, \lambda }$. This is a $16$-dimensional, pointed, unimodular and non-semisimple Hopf algebra. A Hopf algebra $E$ factorizes through $H_4$ and $H_4$ if and only if $ E \cong H_4 \otimes H_4$ or $E \cong {\mathcal H}_{16, \lambda }$. In the last step we classify these quantum groups by proving that there are only three isomorphism classes represented by: $H_4 \otimes H_4$, ${\mathcal H}_{16, 0}$ and ${\mathcal H}_{16, 1} \cong D(H_4)$, the Drinfel'd double of $H_4$. The automorphism group of these objects is also computed: in particular, we prove that ${\rm Aut}_{\rm Hopf}( D(H_4))$ is isomorphic to a semidirect product of groups, $k^{\times } \rtimes \mathbb {Z}_2$. (English)
Keyword: bicrossed product of Hopf algebras
Keyword: Sweedler's Hopf algebra
Keyword: Drinfel'd double
MSC: 16S40
MSC: 16T05
MSC: 16T10
idZBL: Zbl 06391502
idMR: MR3277744
DOI: 10.1007/s10587-014-0109-6
.
Date available: 2014-11-10T09:42:49Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144006
.
Reference: [1] Agore, A. L., Bontea, C. G., Militaru, G.: Classifying bicrossed products of Hopf algebras.Algebr. Represent. Theory 17 (2014), 227-264. MR 3160722, 10.1007/s10468-012-9396-5
Reference: [2] Andruskiewitsch, N., Devoto, J.: Extensions of Hopf algebras.St. Petersbg. Math. J. 7 17-52 (1996), translation from Algebra Anal. 7 22-61 (1995). Zbl 0857.16032, MR 1334152
Reference: [3] Andruskiewitsch, N., Schneider, H.-J.: Lifting of quantum linear spaces and pointed Hopf algebras of order $p^{3}$.J. Algebra 209 658-691 (1998). Zbl 0919.16027, MR 1659895, 10.1006/jabr.1998.7643
Reference: [4] Andruskiewitsch, N., Schneider, H.-J.: Finite quantum groups and Cartan matrices.Adv. Math. 154 1-45 (2000). Zbl 1007.16027, MR 1780094, 10.1006/aima.1999.1880
Reference: [5] Andruskiewitsch, N., Schneider, H.-J.: On the classification of finite-dimensional pointed Hopf algebras.Ann. Math. (2) 171 375-417 (2010). Zbl 1208.16028, MR 2630042, 10.4007/annals.2010.171.375
Reference: [6] Caenepeel, S., Dăscălescu, S., Raianu, Ş.: Classifying pointed Hopf algebras of dimension 16.Commun. Algebra 28 541-568 (2000). Zbl 0952.16030, MR 1736746, 10.1080/00927870008826843
Reference: [7] Doi, Y., Takeuchi, M.: Quaternion algebras and Hopf crossed products.Commun. Algebra 23 3291-3325 (1995). Zbl 0833.16036, MR 1335303, 10.1080/00927879508825403
Reference: [8] García, G. A., Vay, C.: Hopf algebras of dimension 16.Algebr. Represent. Theory 13 383-405 (2010). Zbl 1204.16022, MR 2660853, 10.1007/s10468-009-9128-7
Reference: [9] Kassel, C.: Quantum Groups, Graduate Texts in Mathematics.Graduate Texts in Mathematics 155 Springer, New York (1995). MR 1321145
Reference: [10] Majid, S.: Physics for algebraists: non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction.J. Algebra 130 17-64 (1990). Zbl 0694.16008, MR 1045735, 10.1016/0021-8693(90)90099-A
Reference: [11] Majid, S.: Foundations of Quantum Groups Theory.Cambridge University Press, Cambridge (1995).
Reference: [12] Majid, S.: More examples of bicrossproduct and double cross product Hopf algebras.Isr. J. Math. 72 133-148 (1990). Zbl 0725.17015, MR 1098985, 10.1007/BF02764616
Reference: [13] Masuoka, A.: Cleft extensions for a Hopf algebra generated by a nearly primitive element.Commun. Algebra 22 4537-4559 (1994). Zbl 0809.16046, MR 1284344, 10.1080/00927879408825086
Reference: [14] Montgomery, S.: Hopf Algebras and Their Actions on Rings.Expanded version of ten authors lectures given at the CBMS Conference on Hopf algebras and their actions on rings, DePaul University in Chicago, USA, 1992. Regional Conference Series in Mathematics 82 AMS, Providence, RI (1993). Zbl 0793.16029, MR 1243637
Reference: [15] Radford, D. E.: Minimal quasitriangular Hopf algebras.J. Algebra 157 285-315 (1993). Zbl 0787.16028, MR 1220770, 10.1006/jabr.1993.1102
Reference: [16] Takeuchi, M.: Matched pairs of groups and bismash products of Hopf algebras.Commun. Algebra 9 841-882 (1981). Zbl 0456.16011, MR 0611561, 10.1080/00927878108822621
.

Files

Files Size Format View
CzechMathJ_64-2014-2_9.pdf 285.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo