Previous |  Up |  Next

Article

Title: Join of two graphs admits a nowhere-zero $3$-flow (English)
Author: Akbari, Saieed
Author: Aliakbarpour, Maryam
Author: Ghanbari, Naryam
Author: Nategh, Emisa
Author: Shahmohamad, Hossein
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 2
Year: 2014
Pages: 433-446
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a graph, and $\lambda $ the smallest integer for which $G$ has a nowhere-zero $\lambda $-flow, i.e., an integer $\lambda $ for which $G$ admits a nowhere-zero $\lambda $-flow, but it does not admit a $(\lambda -1)$-flow. We denote the minimum flow number of $G$ by $\Lambda (G)$. In this paper we show that if $G$ and $H$ are two arbitrary graphs and $G$ has no isolated vertex, then $\Lambda (G \vee H) \leq 3$ except two cases: (i) One of the graphs $G$ and $H$ is $K_2$ and the other is $1$-regular. (ii) $H = K_1$ and $G$ is a graph with at least one isolated vertex or a component whose every block is an odd cycle. Among other results, we prove that for every two graphs $G$ and $H$ with at least $4$ vertices, $\Lambda (G \vee H) \leq 3$. (English)
Keyword: nowhere-zero $\lambda $-flow
Keyword: minimum nowhere-zero flow number
Keyword: join of two graphs
MSC: 05C20
MSC: 05C21
MSC: 05C78
idZBL: Zbl 06391503
idMR: MR3277745
DOI: 10.1007/s10587-014-0110-0
.
Date available: 2014-11-10T09:43:47Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144007
.
Reference: [1] Jaeger, F.: Flows and generalized coloring theorems in graphs.J. Comb. Theory, Ser. B 26 (1979), 205-216. Zbl 0422.05028, MR 0532588, 10.1016/0095-8956(79)90057-1
Reference: [2] Jaeger, F.: Nowhere-zero flow problems.Selected Topics in Graph Theory 3 Academic Press, San Diego 71-95 (1988). Zbl 0658.05034, MR 1205397
Reference: [3] Luo, R., Zang, W., Zhang, C.: Nowhere-zero $4$-flows, simultaneous edge-colorings, and critical partial Latin squares.Combinatorica 24 (2004), 641-657. Zbl 1070.05042, MR 2096819, 10.1007/s00493-004-0039-2
Reference: [4] Seymour, P. D.: Nowhere-zero $6$-flows.J. Comb. Theory, Ser. B 30 (1981), 130-135. Zbl 0474.05028, MR 0615308, 10.1016/0095-8956(81)90058-7
Reference: [5] Shahmohamad, H.: On minimum flow number of graphs.Bull. Inst. Comb. Appl. 35 (2002), 26-36. Zbl 0990.05072, MR 1901238
Reference: [6] Thomassen, C., Toft, B.: Non-separating induced cycles in graphs.J. Comb. Theory, Ser. B 31 (1981), 199-224. Zbl 0456.05039, MR 0630983, 10.1016/S0095-8956(81)80025-1
Reference: [7] Tutte, W. T.: A contribution to the theory of chromatic polynomials.Can. J. Math. 6 (1954), 80-91. Zbl 0055.17101, MR 0061366, 10.4153/CJM-1954-010-9
Reference: [8] Tutte, W. T.: On the imbedding of linear graphs in surfaces.Proc. Lond. Math. Soc., II. Ser. 51 (1949), 474-483. Zbl 0033.30803, MR 0029495, 10.1112/plms/s2-51.6.474
Reference: [9] West, D. B.: Introduction to Graph Theory.Prentice Hall, Upper Saddle River (1996). Zbl 0845.05001, MR 1367739
.

Files

Files Size Format View
CzechMathJ_64-2014-2_10.pdf 310.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo