Title:
|
On the $abc$-problem in Weyl-Heisenberg frames (English) |
Author:
|
He, Xinggang |
Author:
|
Li, Haixiong |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
64 |
Issue:
|
2 |
Year:
|
2014 |
Pages:
|
447-458 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $a,b,c>0$. We investigate the characterization problem which asks for a classification of all the triples $(a,b,c)$ such that the Weyl-Heisenberg system $\{{\rm e}^{2\pi {\rm i}mbx} \* \chi _{[na,na+c)}\colon m,n\in {\mathbb Z}\}$ is a frame for $L^2({\mathbb R})$. It turns out that the answer to the problem is quite complicated, see Gu and Han (2008) and Janssen (2003). Using a dilation technique, one can reduce the problem to the case where $b=1$ and only let $a$ and $c$ vary. In this paper, we extend the Zak transform technique and use the Fourier analysis technique to study the problem for the case of $a$ being a rational number. We prove some special cases of values for $c$ and $a$ that do not produce a frame, which expands earlier works. (English) |
Keyword:
|
$abc$-problem |
Keyword:
|
Weyl-Heisenberg frame |
Keyword:
|
Zak transform |
MSC:
|
42C15 |
MSC:
|
42C40 |
idZBL:
|
Zbl 06391504 |
idMR:
|
MR3277746 |
DOI:
|
10.1007/s10587-014-0111-z |
. |
Date available:
|
2014-11-10T09:45:31Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144008 |
. |
Reference:
|
[1] Casazza, P. G.: Modern tools for Weyl-Heisenberg (Gabor) frame theory.Adv. Imag. Elec. Phys. 115 (2000), 1-127. |
Reference:
|
[2] Casazza, P. G., Kalton, N. J.: Roots of complex polynomials and Weyl-Heisenberg frame sets.Proc. Am. Math. Soc. 130 (2002), 2313-2318. Zbl 0991.42023, MR 1896414, 10.1090/S0002-9939-02-06352-9 |
Reference:
|
[3] Gröchenig, K., Stöckler, J.: Gabor frames and totally positive functions.Duke Math. J. 162 (2013), 1003-1031. Zbl 1277.42037, MR 3053565, 10.1215/00127094-2141944 |
Reference:
|
[4] Gu, Q., Han, D.: When a characteristic function generates a Gabor frame.Appl. Comput. Harmon. Anal. 24 (2008), 290-309. Zbl 1242.42023, MR 2407006, 10.1016/j.acha.2007.06.005 |
Reference:
|
[5] Heil, C.: History and evolution of the density theorem for Gabor frames.J. Fourier Anal. Appl. 13 (2007), 113-166. Zbl 1133.42043, MR 2313431, 10.1007/s00041-006-6073-2 |
Reference:
|
[6] Janssen, A. J. E. M.: Some Weyl-Heisenberg frame bound calculations.Indag. Math., New Ser. 7 (1996), 165-183. Zbl 1056.42512, MR 1621312, 10.1016/0019-3577(96)85088-9 |
Reference:
|
[7] Janssen, A. J. E. M.: Zak transforms with few zeros and the tie.Advances in Gabor Analysis H. G. Feichtinger et al. Applied and Numerical Harmonic Analysis Birkhäuser, Basel 31-70 (2003). Zbl 1027.42025, MR 1955931 |
Reference:
|
[8] Janssen, A. J. E. M., Strohmer, T.: Hyperbolic secants yield Gabor frames.Appl. Comput. Harmon. Anal. 12 (2002), 259-267. Zbl 1005.42021, MR 1884237, 10.1006/acha.2001.0376 |
Reference:
|
[9] Lyubarskij, Y. I.: Frames in the Bargmann space of entire functions.Entire and Subharmonic Functions Advances in Soviet Mathematics 11 American Mathematical Society, Providence (1992), 167-180. Zbl 0770.30025, MR 1188007 |
Reference:
|
[10] Seip, K.: Density theorems for sampling and interpolation in the Bargmann-Fock space I.J. Reine Angew. Math. 429 (1992), 91-106. Zbl 0745.46034, MR 1173117 |
Reference:
|
[11] Seip, K., Wallstén, R.: Density theorems for sampling and interpolation in the Bargmann-Fock space II.J. Reine Angew. Math. 429 (1992), 107-113. Zbl 0745.46033, MR 1173118 |
. |