Previous |  Up |  Next

Article

Keywords:
$abc$-problem; Weyl-Heisenberg frame; Zak transform
Summary:
Let $a,b,c>0$. We investigate the characterization problem which asks for a classification of all the triples $(a,b,c)$ such that the Weyl-Heisenberg system $\{{\rm e}^{2\pi {\rm i}mbx} \* \chi _{[na,na+c)}\colon m,n\in {\mathbb Z}\}$ is a frame for $L^2({\mathbb R})$. It turns out that the answer to the problem is quite complicated, see Gu and Han (2008) and Janssen (2003). Using a dilation technique, one can reduce the problem to the case where $b=1$ and only let $a$ and $c$ vary. In this paper, we extend the Zak transform technique and use the Fourier analysis technique to study the problem for the case of $a$ being a rational number. We prove some special cases of values for $c$ and $a$ that do not produce a frame, which expands earlier works.
References:
[1] Casazza, P. G.: Modern tools for Weyl-Heisenberg (Gabor) frame theory. Adv. Imag. Elec. Phys. 115 (2000), 1-127.
[2] Casazza, P. G., Kalton, N. J.: Roots of complex polynomials and Weyl-Heisenberg frame sets. Proc. Am. Math. Soc. 130 (2002), 2313-2318. DOI 10.1090/S0002-9939-02-06352-9 | MR 1896414 | Zbl 0991.42023
[3] Gröchenig, K., Stöckler, J.: Gabor frames and totally positive functions. Duke Math. J. 162 (2013), 1003-1031. DOI 10.1215/00127094-2141944 | MR 3053565 | Zbl 1277.42037
[4] Gu, Q., Han, D.: When a characteristic function generates a Gabor frame. Appl. Comput. Harmon. Anal. 24 (2008), 290-309. DOI 10.1016/j.acha.2007.06.005 | MR 2407006 | Zbl 1242.42023
[5] Heil, C.: History and evolution of the density theorem for Gabor frames. J. Fourier Anal. Appl. 13 (2007), 113-166. DOI 10.1007/s00041-006-6073-2 | MR 2313431 | Zbl 1133.42043
[6] Janssen, A. J. E. M.: Some Weyl-Heisenberg frame bound calculations. Indag. Math., New Ser. 7 (1996), 165-183. DOI 10.1016/0019-3577(96)85088-9 | MR 1621312 | Zbl 1056.42512
[7] Janssen, A. J. E. M.: Zak transforms with few zeros and the tie. Advances in Gabor Analysis H. G. Feichtinger et al. Applied and Numerical Harmonic Analysis Birkhäuser, Basel 31-70 (2003). MR 1955931 | Zbl 1027.42025
[8] Janssen, A. J. E. M., Strohmer, T.: Hyperbolic secants yield Gabor frames. Appl. Comput. Harmon. Anal. 12 (2002), 259-267. DOI 10.1006/acha.2001.0376 | MR 1884237 | Zbl 1005.42021
[9] Lyubarskij, Y. I.: Frames in the Bargmann space of entire functions. Entire and Subharmonic Functions Advances in Soviet Mathematics 11 American Mathematical Society, Providence (1992), 167-180. MR 1188007 | Zbl 0770.30025
[10] Seip, K.: Density theorems for sampling and interpolation in the Bargmann-Fock space I. J. Reine Angew. Math. 429 (1992), 91-106. MR 1173117 | Zbl 0745.46034
[11] Seip, K., Wallstén, R.: Density theorems for sampling and interpolation in the Bargmann-Fock space II. J. Reine Angew. Math. 429 (1992), 107-113. MR 1173118 | Zbl 0745.46033
Partner of
EuDML logo