Title:
|
A characterization of the linear groups $L_{2}(p)$ (English) |
Author:
|
Khalili Asboei, Alireza |
Author:
|
Iranmanesh, Ali |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
64 |
Issue:
|
2 |
Year:
|
2014 |
Pages:
|
459-464 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $G$ be a finite group and $\pi _{e}(G)$ be the set of element orders of $G$. Let $k \in \pi _{e}(G)$ and $m_{k}$ be the number of elements of order $k$ in $G$. Set ${\rm nse}(G):=\{m_{k}\colon k \in \pi _{e}(G)\}$. In fact ${\rm nse}(G)$ is the set of sizes of elements with the same order in $G$. In this paper, by ${\rm nse}(G)$ and order, we give a new characterization of finite projective special linear groups $L_{2}(p)$ over a field with $p$ elements, where $p$ is prime. We prove the following theorem: If $G$ is a group such that $|G|=|L_{2}(p)|$ and ${\rm nse}(G)$ consists of $1$, $p^{2}-1$, $p(p+\epsilon )/2$ and some numbers divisible by $2p$, where $p$ is a prime greater than $3$ with $p \equiv 1$ modulo $4$, then $G \cong L_{2}(p)$. (English) |
Keyword:
|
element order |
Keyword:
|
set of the numbers of elements of the same order |
Keyword:
|
linear group |
MSC:
|
20D06 |
idZBL:
|
Zbl 06391505 |
idMR:
|
MR3277747 |
DOI:
|
10.1007/s10587-014-0112-y |
. |
Date available:
|
2014-11-10T09:47:10Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144009 |
. |
Reference:
|
[1] Asboei, A. K., Amiri, S. S. S., Iranmanesh, A., Tehranian, A.: A characterization of symmetric group $S_{r}$, where $r$ is prime number.Ann. Math. Inform. 40 (2012), 13-23. Zbl 1261.20025, MR 3005112 |
Reference:
|
[2] Asboei, A. K., Amiri, S. S. S., Iranmanesh, A., Tehranian, A.: A new characterization of $A_{7}$ and $A_{8}$.in An. Ştiinţ. Univ. ``Ovidius'' Constanţa Ser. Mat 21 (2013),43-50. MR 3145090 |
Reference:
|
[3] Asboei, A. K., Amiri, S. S. S., Iranmanesh, A., Tehranian, A.: A new characterization of sporadic simple groups by nse and order.J. Algebra Appl. 12 (2013), Paper No. 1250158. MR 3005607, 10.1142/S0219498812501587 |
Reference:
|
[4] Brauer, R., Reynolds, W. F.: On a problem of E. Artin.Ann. Math. 68 (1958), 713-720. Zbl 0082.24803, MR 0100635, 10.2307/1970164 |
Reference:
|
[5] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: Atlas of Finite Groups. Maximal subgroups and ordinary characters for simple groups.Clarendon Press Oxford (1985). Zbl 0568.20001, MR 0827219 |
Reference:
|
[6] Frobenius, G.: Verallgemeinerung des Sylow'schen Satzes.Berl. Ber. (1895), German 981-993. |
Reference:
|
[7] Khatami, M., Khosravi, B., Akhlaghi, Z.: A new characterization for some linear groups.Monatsh. Math. 163 (2011), 39-50. Zbl 1216.20022, MR 2787581, 10.1007/s00605-009-0168-1 |
Reference:
|
[8] Mazurov, V. D., Khukhro, E. I., eds.: The Kourovka Notebook. Unsolved Problems in Group Theory. Including archive of solved problems.Institute of Mathematics, Russian Academy of Sciences, Siberian Div. Novosibirsk (2006). MR 2263886 |
Reference:
|
[9] Shao, C., Jiang, Q.: A new characterization of Mathieu groups.Arch. Math., Brno 46 (2010), 13-23. Zbl 1227.20007, MR 2644451 |
Reference:
|
[10] Shao, C., Shi, W., Jiang, Q.: Characterization of simple $K_{4}$-groups.Front. Math. China 3 (2008), 355-370. Zbl 1165.20020, MR 2425160, 10.1007/s11464-008-0025-x |
Reference:
|
[11] Shen, R., Shao, C., Jiang, Q., Shi, W., Mazurov, V.: A new characterization of $A_{5}$.Monatsh. Math. 160 (2010), 337-341. Zbl 1196.20032, MR 2661315, 10.1007/s00605-008-0083-x |
Reference:
|
[12] Shi, W.: A new characterization of the sporadic simple groups.Group Theory. Proceedings of the Singapore group theory conference 1987 K. N. Cheng et al. Walter de Gruyter Berlin (1989), 531-540. Zbl 0657.20017, MR 0981868 |
Reference:
|
[13] Zhang, L., Liu, X.: Characterization of the projective general linear groups $ PGL(2,q)$ by their orders and degree patterns.Int. J. Algebra Comput. 19 (2009), 873-889. Zbl 1189.20017, MR 2589419, 10.1142/S0218196709005433 |
. |