Previous |  Up |  Next

Article

Title: Normability of Lorentz spaces—an alternative approach (English)
Author: Gogatishvili, Amiran
Author: Soudský, Filip
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 3
Year: 2014
Pages: 581-597
Summary lang: English
.
Category: math
.
Summary: We study normability properties of classical Lorentz spaces. Given a certain general lattice-like structure, we first prove a general sufficient condition for its associate space to be a Banach function space. We use this result to develop an alternative approach to Sawyer's characterization of normability of a classical Lorentz space of type $\Lambda $. Furthermore, we also use this method in the weak case and characterize normability of $\Lambda _{v}^{\infty }$. Finally, we characterize the linearity of the space $\Lambda _{v}^{\infty }$ by a simple condition on the weight $v$. (English)
Keyword: weighted Lorentz space
Keyword: weighted inequality
Keyword: non-increasing rearrangement
Keyword: Banach function space
Keyword: associate space
MSC: 46E30
idZBL: Zbl 06391513
idMR: MR3298548
DOI: 10.1007/s10587-014-0120-y
.
Date available: 2014-12-19T15:53:56Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144045
.
Reference: [1] Bennett, C., Sharpley, R.: Interpolation of Operators.Pure and Applied Mathematics 129 Academic Press, Boston (1988). Zbl 0647.46057, MR 0928802
Reference: [2] Carro, M., Pick, L., Soria, J., Stepanov, V. D.: On embeddings between classical Lorentz spaces.Math. Inequal. Appl. 4 (2001), 397-428. Zbl 0996.46013, MR 1841071
Reference: [3] Cwikel, M., Kamińska, A., Maligranda, L., Pick, L.: Are generalized Lorentz ``spaces'' really spaces?.Proc. Am. Math. Soc. 132 (2004), 3615-3625. Zbl 1061.46026, MR 2084084, 10.1090/S0002-9939-04-07477-5
Reference: [4] Gogatishvili, A., Pick, L.: Embeddings and duality theorem for weak classical Lorentz spaces.Can. Math. Bull. 49 (2006), 82-95. Zbl 1106.26018, MR 2198721, 10.4153/CMB-2006-008-3
Reference: [5] Gogatishvili, A., Pick, L.: Discretization and anti-discretization of rearrangement-invariant norms.Publ. Mat., Barc. 47 (2003), 311-358. Zbl 1066.46023, MR 2006487, 10.5565/PUBLMAT_47203_02
Reference: [6] Lorentz, G. G.: On the theory of spaces $\Lambda$.Pac. J. Math. 1 (1951), 411-429. Zbl 0043.11302, MR 0044740, 10.2140/pjm.1951.1.411
Reference: [7] Sawyer, E.: Boundedness of classical operators on classical Lorentz spaces.Stud. Math. 96 (1990), 145-158. Zbl 0705.42014, MR 1052631, 10.4064/sm-96-2-145-158
.

Files

Files Size Format View
CzechMathJ_64-2014-3_1.pdf 291.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo