Previous |  Up |  Next

Article

Title: Geometry of the spectral semidistance in Banach algebras (English)
Author: Braatvedt, Gareth
Author: Brits, Rudi
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 3
Year: 2014
Pages: 599-610
Summary lang: English
.
Category: math
.
Summary: Let $A$ be a unital Banach algebra over $\mathbb C$, and suppose that the nonzero spectral values of $a$ and $b\in A$ are discrete sets which cluster at $0\in \mathbb C$, if anywhere. We develop a plane geometric formula for the spectral semidistance of $a$ and $b$ which depends on the two spectra, and the orthogonality relationships between the corresponding sets of Riesz projections associated with the nonzero spectral values. Extending a result of Brits and Raubenheimer, we further show that $a$ and $b$ are quasinilpotent equivalent if and only if all the Riesz projections, $p(\alpha ,a)$ and $p(\alpha ,b)$, correspond. For certain important classes of decomposable operators (compact, Riesz, etc.), the proposed formula reduces the involvement of the underlying Banach space $X$ in the computation of the spectral semidistance, and appears to be a useful alternative to Vasilescu's geometric formula (which requires the knowledge of the local spectra of the operators at each $0\not =x\in X$). The apparent advantage gained through the use of a global spectral parameter in the formula aside, various methods of complex analysis can then be employed to deal with the spectral projections; we give examples illustrating the usefulness of the main results. (English)
Keyword: asymptotically intertwined
Keyword: Riesz projection
Keyword: spectral semidistance
Keyword: quasinilpotent equivalent
MSC: 46H05
MSC: 47A05
MSC: 47A10
idZBL: Zbl 06391514
idMR: MR3298549
DOI: 10.1007/s10587-014-0121-x
.
Date available: 2014-12-19T15:55:02Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144047
.
Reference: [1] Alexander, H., Wermer, J.: Several Complex Variables and Banach Algebras (3rd edition).Graduate Texts in Mathematics 35 Springer, New York (1998). MR 1482798
Reference: [2] Brits, R. M., Raubenheimer, H.: Finite spectra and quasinilpotent equivalence in Banach algebras.Czech. Math. J. 62 (2012), 1101-1116. Zbl 1274.46094, MR 3010259, 10.1007/s10587-012-0066-x
Reference: [3] Colojoară, I., Foiaş, C.: Quasi-nilpotent equivalence of not necessarily commuting operators.J. Math. Mech. 15 (1966), 521-540. MR 0192344
Reference: [4] Foiaş, C., Vasilescu, F.-H.: On the spectral theory of commutators.J. Math. Anal. Appl. 31 (1970), 473-486. MR 0290146, 10.1016/0022-247X(70)90001-6
Reference: [5] Laursen, K. B., Neumann, M. M.: An Introduction to Local Spectral Theory.London Mathematical Society Monographs. New Series 20 Clarendon Press, Oxford University Press, New York (2000). Zbl 0957.47004, MR 1747914
Reference: [6] Levin, B. Y.: Lectures on Entire Functions.In collaboration with Y. Lyubarskii, M. Sodin, V. Tkachenko. Translated by V. Tkachenko from the Russian manuscript Translations of Mathematical Monographs 150 American Mathematical Society, Providence (1996). Zbl 0856.30001, MR 1400006
Reference: [7] Razpet, M.: The quasinilpotent equivalence in Banach algebras.J. Math. Anal. Appl. 166 (1992), 378-385. Zbl 0802.46064, MR 1160933, 10.1016/0022-247X(92)90304-V
Reference: [8] Vasilescu, F.-H.: Analytic Functional Calculus and Spectral Decompositionsk.Mathematics and Its Applications (East European Series) 1 D. Reidel Publishing, Dordrecht (1982), translated from the Romanian. MR 0690957
Reference: [9] Vasilescu, F.-H.: Some properties of the commutator of two operators.J. Math. Anal. Appl. 23 (1968), 440-446. Zbl 0159.43402, MR 0229078, 10.1016/0022-247X(68)90080-2
Reference: [10] Vasilescu, F. H.: Spectral distance of two operators.Rev. Roum. Math. Pures Appl. 12 (1967), 733-736. Zbl 0156.38204, MR 0222699
.

Files

Files Size Format View
CzechMathJ_64-2014-3_2.pdf 285.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo