Previous |  Up |  Next

Article

Title: On iteration digraph and zero-divisor graph of the ring $\mathbb {Z}_n$ (English)
Author: Ju, Tengxia
Author: Wu, Meiyun
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 3
Year: 2014
Pages: 611-628
Summary lang: English
.
Category: math
.
Summary: In the first part, we assign to each positive integer $n$ a digraph $\Gamma (n,5),$ whose set of vertices consists of elements of the ring $\mathbb {Z}_n=\{0,1,\cdots ,n-1\}$ with the addition and the multiplication operations modulo $n,$ and for which there is a directed edge from $a$ to $b$ if and only if $a^5\equiv b\pmod n$. Associated with $\Gamma (n,5)$ are two disjoint subdigraphs: $\Gamma _1(n,5)$ and $\Gamma _2(n,5)$ whose union is $\Gamma (n,5).$ The vertices of $\Gamma _1(n,5)$ are coprime to $n,$ and the vertices of $\Gamma _2(n,5)$ are not coprime to $n.$ In this part, we study the structure of $\Gamma (n,5)$ in detail. \endgraf In the second part, we investigate the zero-divisor graph $G(\mathbb {Z}_n)$ of the ring $\mathbb {Z}_n.$ Its vertex- and edge-connectivity are discussed. (English)
Keyword: iteration digraph
Keyword: zero-divisor graph
Keyword: tree
Keyword: cycle
Keyword: vertex-connectivity
MSC: 05C20
MSC: 05C25
MSC: 11A07
idZBL: Zbl 06391515
idMR: MR3298550
DOI: 10.1007/s10587-014-0122-9
.
Date available: 2014-12-19T15:56:19Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144048
.
Reference: [1] Akbari, S., Mohammadian, A.: On the zero-divisor graph of a commutative ring.J. Algebra 274 (2004), 847-855. Zbl 1085.13011, MR 2043378, 10.1016/S0021-8693(03)00435-6
Reference: [2] Akhtar, R., Lee, L.: Connectivity of the zero-divisor graph of finite rings.https//www.researchgate.net/publication/228569713.
Reference: [3] Beck, I.: Coloring of commutative rings.J. Algebra 116 (1988), 208-226. Zbl 0654.13001, MR 0944156, 10.1016/0021-8693(88)90202-5
Reference: [4] Carmichael, R. D.: Note on a new number theory function.Amer. Math. Soc. Bull. (2) 16 (1910), 232-238. MR 1558896, 10.1090/S0002-9904-1910-01892-9
Reference: [5] Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory.2nd Graduate Texts in Mathematics 84 Springer, New York (1990). Zbl 0712.11001, MR 1070716
Reference: [6] Křížek, M., Luca, F., Somer, L.: 17 Lectures on Fermat Numbers. From Number Theory to Geometry.CMS Books in Mathematics 9 Springer, New York (2001). Zbl 1010.11002, MR 1866957
Reference: [7] Skowronek-Kaziów, J.: Some digraphs arising from number theory and remarks on the zero-divisor graph of the ring $\mathbb{Z}_n$.Inf. Process. Lett. 108 (2008), 165-169. MR 2452147, 10.1016/j.ipl.2008.05.002
Reference: [8] Somer, L., Křížek, M.: On a connection of number theory with graph theory.Czech. Math. J. 54 (2004), 465-485. MR 2059267, 10.1023/B:CMAJ.0000042385.93571.58
Reference: [9] Somer, L., Křížek, M.: Stucture of digraphs associated with quadratic congruences with composite moduli.Discrete Math. 306 (2006), 2174-2185. MR 2255611, 10.1016/j.disc.2005.12.026
Reference: [10] Somer, L., Křížek, M.: The structure of digraphs associated with the congruence $x^k\equiv y\pmod n$.Czech. Math. J. 61 (2011), 337-358. Zbl 1249.11006, MR 2905408, 10.1007/s10587-011-0079-x
Reference: [11] Vasiga, T., Shallit, J.: On the iteration of certain quadratic maps over GF($p$).Discrete Math. 277 (2004), 219-240. Zbl 1045.11086, MR 2033734, 10.1016/S0012-365X(03)00158-4
Reference: [12] Wilson, B.: Power digraphs modulo $n$.Fibonacci Q. 36 (1998), 229-239. Zbl 0936.05049, MR 1627384
.

Files

Files Size Format View
CzechMathJ_64-2014-3_3.pdf 355.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo