Title:
|
On iteration digraph and zero-divisor graph of the ring $\mathbb {Z}_n$ (English) |
Author:
|
Ju, Tengxia |
Author:
|
Wu, Meiyun |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
64 |
Issue:
|
3 |
Year:
|
2014 |
Pages:
|
611-628 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In the first part, we assign to each positive integer $n$ a digraph $\Gamma (n,5),$ whose set of vertices consists of elements of the ring $\mathbb {Z}_n=\{0,1,\cdots ,n-1\}$ with the addition and the multiplication operations modulo $n,$ and for which there is a directed edge from $a$ to $b$ if and only if $a^5\equiv b\pmod n$. Associated with $\Gamma (n,5)$ are two disjoint subdigraphs: $\Gamma _1(n,5)$ and $\Gamma _2(n,5)$ whose union is $\Gamma (n,5).$ The vertices of $\Gamma _1(n,5)$ are coprime to $n,$ and the vertices of $\Gamma _2(n,5)$ are not coprime to $n.$ In this part, we study the structure of $\Gamma (n,5)$ in detail. \endgraf In the second part, we investigate the zero-divisor graph $G(\mathbb {Z}_n)$ of the ring $\mathbb {Z}_n.$ Its vertex- and edge-connectivity are discussed. (English) |
Keyword:
|
iteration digraph |
Keyword:
|
zero-divisor graph |
Keyword:
|
tree |
Keyword:
|
cycle |
Keyword:
|
vertex-connectivity |
MSC:
|
05C20 |
MSC:
|
05C25 |
MSC:
|
11A07 |
idZBL:
|
Zbl 06391515 |
idMR:
|
MR3298550 |
DOI:
|
10.1007/s10587-014-0122-9 |
. |
Date available:
|
2014-12-19T15:56:19Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144048 |
. |
Reference:
|
[1] Akbari, S., Mohammadian, A.: On the zero-divisor graph of a commutative ring.J. Algebra 274 (2004), 847-855. Zbl 1085.13011, MR 2043378, 10.1016/S0021-8693(03)00435-6 |
Reference:
|
[2] Akhtar, R., Lee, L.: Connectivity of the zero-divisor graph of finite rings.https//www.researchgate.net/publication/228569713. |
Reference:
|
[3] Beck, I.: Coloring of commutative rings.J. Algebra 116 (1988), 208-226. Zbl 0654.13001, MR 0944156, 10.1016/0021-8693(88)90202-5 |
Reference:
|
[4] Carmichael, R. D.: Note on a new number theory function.Amer. Math. Soc. Bull. (2) 16 (1910), 232-238. MR 1558896, 10.1090/S0002-9904-1910-01892-9 |
Reference:
|
[5] Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory.2nd Graduate Texts in Mathematics 84 Springer, New York (1990). Zbl 0712.11001, MR 1070716 |
Reference:
|
[6] Křížek, M., Luca, F., Somer, L.: 17 Lectures on Fermat Numbers. From Number Theory to Geometry.CMS Books in Mathematics 9 Springer, New York (2001). Zbl 1010.11002, MR 1866957 |
Reference:
|
[7] Skowronek-Kaziów, J.: Some digraphs arising from number theory and remarks on the zero-divisor graph of the ring $\mathbb{Z}_n$.Inf. Process. Lett. 108 (2008), 165-169. MR 2452147, 10.1016/j.ipl.2008.05.002 |
Reference:
|
[8] Somer, L., Křížek, M.: On a connection of number theory with graph theory.Czech. Math. J. 54 (2004), 465-485. MR 2059267, 10.1023/B:CMAJ.0000042385.93571.58 |
Reference:
|
[9] Somer, L., Křížek, M.: Stucture of digraphs associated with quadratic congruences with composite moduli.Discrete Math. 306 (2006), 2174-2185. MR 2255611, 10.1016/j.disc.2005.12.026 |
Reference:
|
[10] Somer, L., Křížek, M.: The structure of digraphs associated with the congruence $x^k\equiv y\pmod n$.Czech. Math. J. 61 (2011), 337-358. Zbl 1249.11006, MR 2905408, 10.1007/s10587-011-0079-x |
Reference:
|
[11] Vasiga, T., Shallit, J.: On the iteration of certain quadratic maps over GF($p$).Discrete Math. 277 (2004), 219-240. Zbl 1045.11086, MR 2033734, 10.1016/S0012-365X(03)00158-4 |
Reference:
|
[12] Wilson, B.: Power digraphs modulo $n$.Fibonacci Q. 36 (1998), 229-239. Zbl 0936.05049, MR 1627384 |
. |