Previous |  Up |  Next

Article

Title: Some properties of the distance Laplacian eigenvalues of a graph (English)
Author: Aouchiche, Mustapha
Author: Hansen, Pierre
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 3
Year: 2014
Pages: 751-761
Summary lang: English
.
Category: math
.
Summary: The distance Laplacian of a connected graph $G$ is defined by $\mathcal {L} = {\rm Diag(Tr)}- \mathcal {D}$, where $\mathcal {D}$ is the distance matrix of $G$, and ${\rm Diag(Tr)}$ is the diagonal matrix whose main entries are the vertex transmissions in $G$. The spectrum of $\mathcal {L}$ is called the distance Laplacian spectrum of $G$. In the present paper, we investigate some particular distance Laplacian eigenvalues. Among other results, we show that the complete graph is the unique graph with only two distinct distance Laplacian eigenvalues. We establish some properties of the distance Laplacian spectrum that enable us to derive the distance Laplacian characteristic polynomials for several classes of graphs. (English)
Keyword: distance matrix
Keyword: Laplacian
Keyword: characteristic polynomial
Keyword: eigenvalue
MSC: 05C12
MSC: 05C31
MSC: 05C50
MSC: 05C76
idZBL: Zbl 06391522
idMR: MR3298557
DOI: 10.1007/s10587-014-0129-2
.
Date available: 2014-12-19T16:09:08Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144055
.
Reference: [1] Aouchiche, M., Bonnefoy, J. M., Fidahoussen, A., Caporossi, G., Hansen, P., Hiesse, L., Lacheré, J., Monhait, A.: Variable neighborhood search for extremal graphs. XIV: The AutoGraphiX 2 system.Global Optimization. From Theory to Implementation Nonconvex Optim. Appl. 84 Springer, New York (2006), 281-310 L. Liberti et al. Zbl 1100.90052, MR 2206957
Reference: [2] Aouchiche, M., Caporossi, G., Hansen, P.: Variable neighborhood search for extremal graphs. 20. Automated comparison of graph invariants.MATCH Commun. Math. Comput. Chem. 58 (2007), 365-384. Zbl 1274.05235, MR 2357366
Reference: [3] Aouchiche, M., Hansen, P.: Two Laplacians for the distance matrix of a graph.Linear Algebra Appl. 439 (2013), 21-33. Zbl 1282.05086, MR 3045220
Reference: [4] G. A. Baker, Jr.: Drum shapes and isospectral graphs.J. Math. Phys. 7 (1966), 2238-2242. Zbl 0203.27401, 10.1063/1.1704911
Reference: [5] Brouwer, A. E., Haemers, W. H.: Spectra of Graphs.Universitext Springer, Berlin (2012). Zbl 1231.05001, MR 2882891
Reference: [6] Caporossi, G., Hansen, P.: Variable neighborhood search for extremal graphs. I: The AutoGraphiX system.Discrete Math. 212 (2000), 29-44 (J. Harant et al., eds.). Zbl 0947.90130, MR 1748671, 10.1016/S0012-365X(99)00206-X
Reference: [7] Collatz, L., Sinogowitz, U.: Spektren endlicher Grafen.Abh. Math. Semin. Univ. Hamb. 21 German (1957), 63-77. Zbl 0077.36704, MR 0087952, 10.1007/BF02941924
Reference: [8] Cvetković, D. M.: Graphs and their spectra.Publ. Fac. Electrotech. Univ. Belgrade, Ser. Math. Phys. 354-356 (1971), 1-50. Zbl 0238.05102, MR 0299508
Reference: [9] Cvetković, D. M., Doob, M., Gutman, I., Torgašev, A.: Recent Results in the Theory of Graph Spectra.Annals of Discrete Mathematics 36 North-Holland, Amsterdam (1988). Zbl 0634.05054, MR 0926481
Reference: [10] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs. Theory and Applications.J. A. Barth Verlag, Leipzig (1995). Zbl 0824.05046, MR 1324340
Reference: [11] Cvetković, D. M., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra.London Mathematical Society Student Texts 75 Cambridge University Press, Cambridge (2010). Zbl 1211.05002, MR 2571608
Reference: [12] Fiedler, M.: Algebraic connectivity of graphs.Czech. Math. J. 23 (1973), 298-305. Zbl 0265.05119, MR 0318007
Reference: [13] Fujii, H., Katsuda, A.: Isospectral graphs and isoperimetric constants.Discrete Math. 207 (1999), 33-52. Zbl 1131.05309, MR 1710481, 10.1016/S0012-365X(99)00133-8
Reference: [14] Günthard, H. H., Primas, H.: Zusammenhang von Graphtheorie und MO-Theorie von Molekeln mit Systemen konjugierter Bindungen.Helv. Chim. Acta 39 (1956), 1645-1653 German. 10.1002/hlca.19560390623
Reference: [15] Haemers, W. H., Spence, E.: Enumeration of cospectral graphs.Eur. J. Comb. 25 (2004), 199-211. Zbl 1033.05070, MR 2070541, 10.1016/S0195-6698(03)00100-8
Reference: [16] Halbeisen, L., Hungerbühler, N.: Generation of isospectral graphs.J. Graph Theory 31 (1999), 255-265. Zbl 0932.05053, MR 1688950, 10.1002/(SICI)1097-0118(199907)31:3<255::AID-JGT7>3.0.CO;2-6
Reference: [17] Holton, D. A., Sheehan, J.: The Petersen Graph.Australian Mathematical Society Lecture Series 7 Cambridge University Press, Cambridge (1993). Zbl 0781.05001, MR 1232658
Reference: [18] Marcus, M., Minc, H.: A Survey of Matrix Theory and Matrix Inequalities. Reprint of the 1969 edition.Dover Publications, New York (1992). MR 1215484
Reference: [19] McKay, B. D.: On the spectral characterisation of trees.Ars Comb. 3 (1977), 219-232. Zbl 0404.05045, MR 0543669
Reference: [20] Merris, R.: Large families of Laplacian isospectral graphs.Linear Multilinear Algebra 43 (1997), 201-205. Zbl 0887.05036, MR 1613203, 10.1080/03081089708818525
Reference: [21] Merris, R.: Laplacian matrices of graphs: A survey.Second Conference of the International Linear Algebra Society, Lisbon, 1992 (J. D. da Silva et al., eds.) Linear Algebra Appl. 197-198 (1994), 143-176. Zbl 0802.05053, MR 1275613
Reference: [22] Mohar, B.: Graph Laplacians.Topics in Algebraic Graph Theory Encyclopedia of Mathematics and its Applications 102 Cambridge University Press, Cambridge (2004), 113-136 L. W. Beineke et al. Zbl 1161.05334, MR 2125091
Reference: [23] Schwenk, A. J.: Almost all trees are cospectral.New Directions in the Theory of Graphs. Proc. Third Ann Arbor Conf., Univ. Michigan, Ann Arbor, Mich., 1971 Academic Press, New York (1973), 275-307 F. Harary. MR 0384582
Reference: [24] Tan, J.: On isospectral graphs.Interdiscip. Inf. Sci. 4 (1998), 117-124. Zbl 0926.05027, MR 1664212
Reference: [25] Dam, E. R. van, Haemers, W. H.: Which graphs are determined by their spectrum?.Special Issue on the Combinatorial Matrix Theory Conference, Pohang, 2002 Linear Algebra Appl. 373 (2003), 241-272. MR 2022290
.

Files

Files Size Format View
CzechMathJ_64-2014-3_10.pdf 271.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo