Previous |  Up |  Next

Article

Title: Finite groups whose set of numbers of subgroups of possible order has exactly 2 elements (English)
Author: Shao, Changguo
Author: Jiang, Qinhui
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 3
Year: 2014
Pages: 827-831
Summary lang: English
.
Category: math
.
Summary: Counting subgroups of finite groups is one of the most important topics in finite group theory. We classify the finite non-nilpotent groups $G$ whose set of numbers of subgroups of possible orders $n(G)$ has exactly two elements. We show that if $G$ is a non-nilpotent group whose set of numbers of subgroups of possible orders has exactly 2 elements, then $G$ has a normal Sylow subgroup of prime order and $G $ is solvable. Moreover, as an application we give a detailed description of non-nilpotent groups with $n(G)=\{1, q+1\}$ for some prime $q$. In particular, $G$ is supersolvable under this condition. (English)
Keyword: finite group
Keyword: number of subgroups of possible orders
MSC: 20E07
MSC: 20E45
idZBL: Zbl 06391528
idMR: MR3298563
DOI: 10.1007/s10587-014-0135-4
.
Date available: 2014-12-19T16:15:59Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144061
.
Reference: [1] Bhowmik, G.: Evaluation of divisor functions of matrices.Acta Arith. 74 (1996), 155-159. Zbl 0848.15015, MR 1373705, 10.4064/aa-74-2-155-159
Reference: [2] Guo, W. B.: Finite groups with given normalizers of Sylow subgroups. II.Acta Math. Sin. 39 Chinese (1996), 509-513. Zbl 0862.20014, MR 1418684
Reference: [3] M. Hall, Jr.: The Theory of Groups.Macmillan Company, New York (1959). Zbl 0084.02202, MR 0103215
Reference: [4] Huppert, B.: Endliche Gruppen. I.Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134 Springer, Berlin German (1967). Zbl 0217.07201, MR 0224703
Reference: [5] Qu, H., Sun, Y., Zhang, Q.: Finite $p$-groups in which the number of subgroups of possible order is less than or equal to $p^3$.Chin. Ann. Math., Ser. B 31 (2010), 497-506. Zbl 1216.20014, MR 2672246, 10.1007/s11401-010-0590-7
Reference: [6] Shao, C., Shi, W., Jiang, Q.: Characterization of simple $K_4$-groups.Front. Math. China 3 (2008), 355-370. Zbl 1165.20020, MR 2425160, 10.1007/s11464-008-0025-x
Reference: [7] Tang, F.: Finite groups with exactly two conjugacy class sizes of subgroups.Acta Math. Sin., Chin. Ser. 54 Chinese (2011), 619-622. Zbl 1265.20031, MR 2882946
Reference: [8] Tărnăuceanu, M.: Counting subgroups for a class of finite nonabelian $p$-groups.An. Univ. Vest Timiş., Ser. Mat.-Inform. 46 (2008), 145-150. Zbl 1199.20020, MR 2791473
Reference: [9] Zhang, J.: Sylow numbers of finite groups.J. Algebra 176 (1995), 111-123. Zbl 0832.20042, MR 1345296, 10.1006/jabr.1995.1235
.

Files

Files Size Format View
CzechMathJ_64-2014-3_16.pdf 222.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo