Previous |  Up |  Next

Article

Title: Edgeless graphs are the only universal fixers (English)
Author: Wash, Kirsti
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 3
Year: 2014
Pages: 833-843
Summary lang: English
.
Category: math
.
Summary: Given two disjoint copies of a graph $G$, denoted $G^1$ and $G^2$, and a permutation $\pi $ of $V(G)$, the graph $\pi G$ is constructed by joining $u \in V(G^1)$ to $\pi (u) \in V(G^2)$ for all $u \in V(G^1)$. $G$ is said to be a universal fixer if the domination number of $\pi G$ is equal to the domination number of $G$ for all $\pi $ of $V(G)$. In 1999 it was conjectured that the only universal fixers are the edgeless graphs. Since then, a few partial results have been shown. In this paper, we prove the conjecture completely. (English)
Keyword: universal fixer
Keyword: domination
MSC: 05C69
idZBL: Zbl 06391529
idMR: MR3298564
DOI: 10.1007/s10587-014-0136-3
.
Date available: 2014-12-19T16:16:50Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144062
.
Reference: [1] Burger, A. P., Mynhardt, C. M.: Regular graphs are not universal fixers.Discrete Math. 310 (2010), 364-368. Zbl 1216.05098, MR 2563053, 10.1016/j.disc.2008.09.016
Reference: [2] Cockayne, E. J., Gibson, R. G., Mynhardt, C. M.: Claw-free graphs are not universal fixers.Discrete Math. 309 (2009), 128-133. Zbl 1219.05116, MR 2475005, 10.1016/j.disc.2007.12.053
Reference: [3] Gibson, R. G.: Bipartite graphs are not universal fixers.Discrete Math. 308 (2008), 5937-5943. Zbl 1181.05068, MR 2464884, 10.1016/j.disc.2007.11.006
Reference: [4] Gu, W.: Communication with S. T. Hedetniemi.Southeastern Conference on Combinatorics, Graph Theory, and Computing. Newfoundland, Canada, 1999.
Reference: [5] Gu, W., Wash, K.: Bounds on the domination number of permutation graphs.J. Interconnection Networks 10 (2009), 205-217. 10.1142/S0219265909002522
Reference: [6] Hartnell, B. L., Rall, D. F.: On dominating the Cartesian product of a graph and $K_2$.Discuss. Math., Graph Theory 24 (2004), 389-402. Zbl 1063.05107, MR 2120063, 10.7151/dmgt.1238
Reference: [7] Mynhardt, C. M., Xu, Z.: Domination in prisms of graphs: universal fixers.Util. Math. 78 (2009), 185-201. Zbl 1284.05199, MR 2499846
.

Files

Files Size Format View
CzechMathJ_64-2014-3_17.pdf 285.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo