Previous |  Up |  Next


multivariate copulas; transformations; symmetry; order; measures of concordance
The present paper introduces a group of transformations on the collection of all multivariate copulas. The group contains a subgroup which is of particular interest since its elements preserve symmetry, the concordance order between two copulas and the value of every measure of concordance.
[1] Durante, F., Sempi, C.: Copula theory: an introduction. In: Copula Theory and Its Applications (P. Jaworski, F. Durante, W. Häerdle, T. Rychlik, eds.), Springer, Berlin, Heidelberg 2010, pp. 3-31. MR 3051261
[2] Dolati, A., Úbeda-Flores, M.: On measures of multivariate concordance. J. Probab. Stat. Sci. 4 (2006), 147-163. MR 2488161
[3] Fuchs, S., Schmidt, K. D.: Bivariate copulas: Transformations, asymmetry and measure of concordance. Kybernetika 50 (2013), 109-125. MR 3195007
[4] Nelsen, R. B.: An Introduction to Copulas. Second Edition. Springer, New York 2006. MR 2197664
[5] Taylor, M. D.: Multivariate measures of concordance. Ann. Inst. Statist. Math. 59 (2007), 789-806. DOI 10.1007/s10463-006-0076-2 | MR 2397737 | Zbl 1131.62054
[6] Taylor, M. D.: Some properties of multivariate measures of concordance. arXiv:0808.3105 (2008).
[7] Taylor, M. D.: Multivariate measures of concordance for copulas and their marginals. arXiv:1004.5023 (2010). MR 2397737
[8] Úbeda-Flores, M.: Multivariate versions of Blomqvist's beta and Spearman's footrule. Ann. Inst. Statist. Math. 57 (2005) 781-788. DOI 10.1007/BF02915438 | MR 2213491 | Zbl 1093.62060
Partner of
EuDML logo