Previous |  Up |  Next

Article

Title: On a high-order iterative scheme for a nonlinear Love equation (English)
Author: Ngoc, Le Thi Phuong
Author: Duy, Nguyen Tuan
Author: Long, Nguyen Thanh
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 60
Issue: 3
Year: 2015
Pages: 285-298
Summary lang: English
.
Category: math
.
Summary: In this paper, a high-order iterative scheme is established for a nonlinear Love equation associated with homogeneous Dirichlet boundary conditions. This is a development based on recent results (L. T. P. Ngoc, N. T. Long (2011); L. X. Truong, L. T. P. Ngoc, N. T. Long (2009)) to get a convergent sequence at a rate of order $N \geq 2$ to a local unique weak solution of the above mentioned equation. (English)
Keyword: nonlinear Love equation
Keyword: Faedo-Galerkin method
Keyword: convergence of order $N$
MSC: 35L20
MSC: 35L70
idZBL: Zbl 06486912
idMR: MR3419963
DOI: 10.1007/s10492-015-0096-4
.
Date available: 2015-05-15T07:39:18Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144264
.
Reference: [1] Albert, J.: On the decay of solutions of the generalized Benjamin-Bona-Mahony equation.J. Math. Anal. Appl. 141 (1989), 527-537. Zbl 0697.35116, MR 1009061, 10.1016/0022-247X(89)90195-9
Reference: [2] Amick, C. J., Bona, J. L., Schonbek, M. E.: Decay of solutions of some nonlinear wave equations.J. Differ. Equations 81 (1989), 1-49. Zbl 0689.35081, MR 1012198, 10.1016/0022-0396(89)90176-9
Reference: [3] Chattopadhyay, A., Gupta, S., Singh, A. K., Sahu, S. A.: Propagation of shear waves in an irregular magnetoelastic monoclinic layer sandwiched between two isotropic half-spaces.Internat. J. Engrg., Sci. Technol. 1 (2009), 228-244.
Reference: [4] Clarkson, P. A.: New similarity reductions and Painlevé analysis for the symmetric regularised long wave and modified Benjamin-Bona-Mahoney equations.J. Phys. A, Math. Gen. 22 (1989), 3821-3848. Zbl 0711.35113, MR 1015235, 10.1088/0305-4470/22/18/020
Reference: [5] Deimling, K.: Nonlinear Functional Analysis.Springer Berlin (1985). Zbl 0559.47040, MR 0787404
Reference: [6] Dutta, S.: On the propagation of Love type waves in an infinite cylinder with rigidity and density varying linearly with the radial distance.Pure Applied Geophys. 98 (1972), 35-39. 10.1007/BF00875578
Reference: [7] Lakshmikantham, V., Leela, S.: Differential and Integral Inequalities. Theory and Applications. Vol. I: Ordinary Differential Equations.Mathematics in Science and Engineering. Vol. 55 Academic Press, New York (1969). Zbl 0177.12403, MR 0379933
Reference: [8] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites nonlinéaires.French Etudes mathematiques Dunod; Gauthier-Villars, Paris (1969). MR 0259693
Reference: [9] Makhankov, V. G.: Dynamics of classical solitons (in nonintegrable systems).Phys. Rep. 35 (1978), 1-128. MR 0481361, 10.1016/0370-1573(78)90074-1
Reference: [10] Ngoc, L. T. P., Duy, N. T., Long, N. T.: A linear recursive scheme associated with the Love equation.Acta Math. Vietnam. 38 (2013), 551-562. Zbl 1310.35174, MR 3129917, 10.1007/s40306-013-0034-z
Reference: [11] Ngoc, L. T. P., Duy, N. T., Long, N. T.: Existence and properties of solutions of a boundary problem for a Love's equation.Bull. Malays. Math. Sci. Soc. (2) 37 (2014), 997-1016. Zbl 1304.35231, MR 3295564
Reference: [12] Ngoc, L. T. P., Long, N. T.: A high order iterative scheme for a nonlinear Kirchhoff wave equation in the unit membrane.Int. J. Differ. Equ. 2011 (2011), Article ID 679528, 31 pages. Zbl 1242.35014, MR 2854955
Reference: [13] Ngoc, L. T. P., Truong, L. X., Long, N. T.: An $N$-order iterative scheme for a nonlinear Kirchhoff-Carrier wave equation associated with mixed homogeneous conditions.Acta Math. Vietnam. 35 (2010), 207-227. Zbl 1233.35134, MR 2731324
Reference: [14] Ogino, T., Takeda, S.: Computer simulation and analysis for the spherical and cylindrical ion-acoustic solitons.J. Phys. Soc. Jpn. 41 (1976), 257-264. 10.1143/JPSJ.41.257
Reference: [15] Parida, P. K., Gupta, D. K.: Recurrence relations for a Newton-like method in Banach spaces.J. Comput. Appl. Math. 206 (2007), 873-887. Zbl 1119.47063, MR 2333719, 10.1016/j.cam.2006.08.027
Reference: [16] Paul, M. K.: On propagation of Love-type waves on a spherical model with rigidity and density both varying exponentially with the radial distance.Pure Applied Geophys. 59 (1964), 33-37. Zbl 0135.23902, 10.1007/BF00880505
Reference: [17] Radochová, V.: Remark to the comparison of solution properties of Love's equation with those of wave equation.Apl. Mat. 23 (1978), 199-207. MR 0492985
Reference: [18] Seyler, C. E., Fenstermacher, D. L.: A symmetric regularized-long-wave equation.Phys. Fluids 27 (1984), 4-7. Zbl 0544.76170, 10.1063/1.864487
Reference: [19] Truong, L. X., Ngoc, L. T. P., Long, N. T.: High-order iterative schemes for a nonlinear Kirchhoff-Carrier wave equation associated with the mixed homogeneous conditions.Nonlinear Anal., Theory Mathods Appl., Ser. A, Theory Methods 71 (2009), 467-484. Zbl 1173.35603, MR 2518053, 10.1016/j.na.2008.10.086
Reference: [20] Truong, L. X., Ngoc, L. T. P., Long, N. T.: The $N$-order iterative schemes for a nonlinear Kirchhoff-Carrier wave equation associated with the mixed inhomogeneous conditions.Appl. Math. Comput. 215 (2009), 1908-1925. Zbl 1191.65122, MR 2557432, 10.1016/j.amc.2009.07.056
.

Files

Files Size Format View
AplMat_60-2015-3_4.pdf 278.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo