Previous |  Up |  Next

Article

Title: Contracting endomorphisms and dualizing complexes (English)
Author: Nasseh, Saeed
Author: Sather-Wagstaff, Sean
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 3
Year: 2015
Pages: 837-865
Summary lang: English
.
Category: math
.
Summary: We investigate how one can detect the dualizing property for a chain complex over a commutative local Noetherian ring $R$. Our focus is on homological properties of contracting endomorphisms of $R$, e.g., the Frobenius endomorphism when $R$ contains a field of positive characteristic. For instance, in this case, when $R$ is $F$-finite and $C$ is a semidualizing $R$-complex, we prove that the following conditions are equivalent: (i) $C$ is a dualizing $R$-complex; (ii) $C\sim {\bold R}{\rm Hom}_R(^nR,C)$ for some $n>0$; (iii) ${\rm G}_C\text {\rm -dim} ^nR <\infty $ and $C$ is derived ${\bold R}{\rm Hom}_R(^nR,C)$-reflexive for some $n>0$; and (iv) ${\rm G}_C\text {\rm -dim} ^nR <\infty $ for infinitely many $n>0$. (English)
Keyword: Bass classes
Keyword: contracting endomorphisms
Keyword: dualizing complex
Keyword: Frobenius endomorphisms
Keyword: ${\rm G}_{C}$-dimension
Keyword: semidualizing complex
MSC: 13A35
MSC: 13D05
MSC: 13D09
idZBL: Zbl 06537696
idMR: MR3407609
DOI: 10.1007/s10587-015-0212-3
.
Date available: 2015-10-04T18:25:39Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144447
.
Reference: [1] André, M.: Homologie des algèbres commutatives.Die Grundlehren der mathematischen Wissenschaften 206 Springer, Berlin French (1974). Zbl 0284.18009, MR 0352220
Reference: [2] Auslander, M., Bridger, M.: Stable Module Theory.Memoirs of the American Mathematical Society 94 American Mathematical Society, Providence (1969). Zbl 0204.36402, MR 0269685
Reference: [3] Auslander, M., Buchsbaum, D. A.: Homological dimension in local rings.Trans. Am. Math. Soc. 85 (1957), 390-405. Zbl 0078.02802, MR 0086822, 10.1090/S0002-9947-1957-0086822-7
Reference: [4] Avramov, L. L., Foxby, H.-B.: Ring homomorphisms and finite Gorenstein dimension.Proc. Lond. Math. Soc. (3) 75 (1997), 241-270. Zbl 0901.13011, MR 1455856, 10.1112/S0024611597000348
Reference: [5] Avramov, L. L., Foxby, H.-B.: Locally Gorenstein homomorphisms.Am. J. Math. 114 (1992), 1007-1047. Zbl 0769.13007, MR 1183530, 10.2307/2374888
Reference: [6] Avramov, L. L., Foxby, H.-B.: Homological dimensions of unbounded complexes.J. Pure Appl. Algebra 71 (1991), 129-155. Zbl 0737.16002, MR 1117631, 10.1016/0022-4049(91)90144-Q
Reference: [7] Avramov, L. L., Foxby, H.-B., Herzog, B.: Structure of local homomorphisms.J. Algebra 164 (1994), 124-145. Zbl 0798.13002, MR 1268330, 10.1006/jabr.1994.1057
Reference: [8] Avramov, L. L., Hochster, M., Iyengar, S. B., Yao, Y.: Homological invariants of modules over contracting endomorphisms.Math. Ann. 353 (2012), 275-291. Zbl 1241.13013, MR 2915536, 10.1007/s00208-011-0682-z
Reference: [9] Avramov, L. L., Iyengar, S. B., Lipman, J.: Reflexivity and rigidity for complexes. I. Commutative rings.Algebra Number Theory 4 (2010), 47-86. Zbl 1194.13017, MR 2592013, 10.2140/ant.2010.4.47
Reference: [10] Avramov, L. L., Iyengar, S., Miller, C.: Homology over local homomorphisms.Am. J. Math. 128 (2006), 23-90. Zbl 1102.13011, MR 2197067, 10.1353/ajm.2006.0001
Reference: [11] Christensen, L. W.: Semi-dualizing complexes and their Auslander categories.Appendix: Chain defects Trans. Am. Math. Soc. 353 (2001), 1839-1883. Zbl 0969.13006, MR 1813596
Reference: [12] Christensen, L. W., Frankild, A., Holm, H.: On Gorenstein projective, injective and flat dimensions---a functorial description with applications.J. Algebra 302 (2006), 231-279. Zbl 1104.13008, MR 2236602, 10.1016/j.jalgebra.2005.12.007
Reference: [13] Christensen, L. W., Holm, H.: Ascent properties of Auslander categories.Can. J. Math. 61 (2009), 76-108. Zbl 1173.13016, MR 2488450, 10.4153/CJM-2009-004-x
Reference: [14] Foxby, H.-B.: Isomorphisms between complexes with applications to the homological theory of modules.Math. Scand. 40 (1977), 5-19. Zbl 0356.13004, MR 0447269, 10.7146/math.scand.a-11671
Reference: [15] Foxby, H.-B., Frankild, A. J.: Cyclic modules of finite Gorenstein injective dimension and Gorenstein rings.Ill. J. Math. 51 (2007), 67-82. Zbl 1121.13015, MR 2346187, 10.1215/ijm/1258735325
Reference: [16] Foxby, H.-B., Thorup, A.: Minimal injective resolutions under flat base change.Proc. Am. Math. Soc. 67 (1977), 27-31. Zbl 0381.13006, MR 0453724, 10.1090/S0002-9939-1977-0453724-1
Reference: [17] Frankild, A., Sather-Wagstaff, S.: Reflexivity and ring homomorphisms of finite flat dimension.Commun. Algebra 35 (2007), 461-500. Zbl 1118.13015, MR 2294611, 10.1080/00927870601052489
Reference: [18] Gelfand, S. I., Manin, Y. I.: Methods of Homological Algebra.Springer Monographs in Mathematics Springer, Berlin (1996), translated from the Russian Nauka Moskva (1988). Zbl 0668.18001
Reference: [19] Goto, S.: A problem on Noetherian local rings of characteristic $p$.Proc. Am. Math. Soc. 64 (1977), 199-205. Zbl 0408.13008, MR 0447212
Reference: [20] Grothendieck, A.: Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents, Première partie (I).Publ. Math., Inst. Hautes Étud. Sci. 11 French (1961), 349-511.
Reference: [21] Hartshorne, R.: Residues and Duality.Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/1964 Lecture Notes in Mathematics 20 Springer, Berlin (1966). Zbl 0212.26101, MR 0222093, 10.1007/BFb0080482
Reference: [22] Hungerford, T. W.: Algebra.Graduate Texts in Mathematics 73 Springer, New York (1980). Zbl 0442.00002, MR 0600654
Reference: [23] Iyengar, S., Sather-Wagstaff, S.: G-dimension over local homomorphisms. Applications to the Frobenius endomorphism.Ill. J. Math. 48 (2004), 241-272. Zbl 1103.13009, MR 2048224, 10.1215/ijm/1258136183
Reference: [24] Kunz, E.: On Noetherian rings of characteristic $p$.Am. J. Math. 98 (1976), 999-1013. Zbl 0341.13009, MR 0432625, 10.2307/2374038
Reference: [25] Kunz, E.: Characterizations of regular local rings for characteristic $p$.Am. J. Math. 91 (1969), 772-784. MR 0252389, 10.2307/2373351
Reference: [26] Matsumura, H.: Commutative Ring Theory.Cambridge Studies in Advanced Mathematics 8 Cambridge University Press, Cambridge (1989). Zbl 0666.13002, MR 1011461
Reference: [27] Nasseh, S., Sather-Wagstaff, S.: Cohen factorizations: Weak functoriality and applications.J. Pure Appl. Algebra 219 (2015), 622-645. Zbl 1304.13014, MR 3279378, 10.1016/j.jpaa.2014.05.017
Reference: [28] Nasseh, S., Tousi, M., Yassemi, S.: Characterization of modules of finite projective dimension via Frobenius functors.Manuscr. Math. 130 (2009), 425-431. Zbl 1222.13013, MR 2563144, 10.1007/s00229-009-0296-x
Reference: [29] Rodicio, A. G.: On a result of Avramov.Manuscr. Math. 62 (1988), 181-185. Zbl 0657.13012, MR 0963004, 10.1007/BF01278977
Reference: [30] Sather-Wagstaff, S.: Bass numbers and semidualizing complexes.Commutative Algebra and Its Applications M. Fontana et al. Conf. Proc. Fez, Morocco, 2009. Walter de Gruyter Berlin (2009), 349-381. Zbl 1184.13045, MR 2640315
Reference: [31] Sather-Wagstaff, S.: Complete intersection dimensions and Foxby classes.J. Pure Appl. Algebra 212 (2008), 2594-2611. Zbl 1156.13003, MR 2452313, 10.1016/j.jpaa.2008.04.005
Reference: [32] Serre, J.-P.: Sur la dimension homologique des anneaux et des modules noethériens.Proc. of the International Symposium on Algebraic Number Theory, Tokyo & Nikko, 1955 Science Council of Japan Tokyo French (1956), 175-189. Zbl 0073.26004, MR 0086071
Reference: [33] Takahashi, R., Yoshino, Y.: Characterizing Cohen-Macaulay local rings by Frobenius maps.Proc. Am. Math. Soc. 132 (2004), 3177-3187. Zbl 1094.13007, MR 2073291, 10.1090/S0002-9939-04-07525-2
Reference: [34] Verdier, J.-L.: On derived categories of abelian categories.G. Maltsiniotis Astérisque 239 Société Mathématique de France, Paris French (1996). MR 1453167
Reference: [35] Verdier, J.-L.: Catégories dérivées. Quelques résultats (Etat O).Cohomologie étale. Séminaire de géométrie algébrique du Bois-Marie SGA 4 1/2; Lecture Notes in Mathematics 569 Springer, Berlin French 262-311 (1977). Zbl 0407.18008, MR 0463174
Reference: [36] Yassemi, S.: G-dimension.Math. Scand. 77 (1995), 161-174. Zbl 0864.13010, MR 1379262
.

Files

Files Size Format View
CzechMathJ_65-2015-3_16.pdf 414.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo